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Kurzfassung

Global optimisation and learning for lighting design ist eine Erweiterung des Tamashii
Rendering Framworks der Rendering and Modeling Gruppe der TU Wien. Tamashii bietet
ein graphisches User Interface und die Implementierung für eine lokale Optimierung mit
dem Ziel, die vorgegegbene Zielbeleuchtung einer Szene zu rekonstruieren, indem die dafür
nötige Position einer oder mehrerer Lichtquelle gefunden wird. Unsere Arbeit ergänzt das
Framework mit einer globalen Suche für die optimiale Lichtposition und mit Surrogaten als
alternative Optimierungsmethode aus dem Machine Learning Bereich. Wir untersuchen
die Leistungsfähigkeit der verschiedenen eingesetzten Algorithmen zur Optimierung in
Hinblick auf Effizient, Genauigkeit und Vielseitigkeit. Außerdem vergleichen wir die
Optimierungsalgorithm im Einsatz auf dem ursprünglichen Tamashii-Model mit dem
Einsatz auf Surrogaten.
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Abstract

Global optimisation and learning for lighting design is a work in extension of the Tamashii
rendering framework by the Rendering and Modeling Group at TU Wien. Tamashii offers
a user interface and implementation to perform a local optimisation task on a scene to
find the position of the scene’s light object in order to recreate a given target illumination.
We extend the existing framework by implementing a global search for the optimum and
additional surrogate models to provide machine learning alternatives to apply various
optimisation algorithms. We examine the performance of several different optimisation
methods with respect to efficiency, accuracy, and versatility. Furthermore, we compare
the use of algorithms in combination with surrogate models versus optimising on the
Tamashii model directly.
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CHAPTER 1
Introduction

Lighting design is an important aspect to consider when creating an environment, be
it in interior design, art, or a professional work context. Lighting configurations can
have various effects on the surroundings, for example, creating different moods in an
interior context or generating a good or bad display of objects in art. Tamashii is a
rendering framework developed by the Rendering and Modeling Group at TU Wien and
offers automated lighting design with extensive user interaction [LHEN+24]. The user
can load a scene or an object into the framework and set some lighting requirements in
various forms. The lighting requirements are represented by one or more light sources,
characterised by their type of light source, position, intensity or light colour. They define
the optimal illumination of certain objects, like desks in an office space or illumination
of an art object in a certain way. What Tamashii does is determine the best lighting
position in order to match the desired (target) illumination. To achieve this task, Tamashii
performs a local optimisation, which is the leverage point for this work. Our goal is
to extend the existing framework by broadening the optimisation from a local one to
a global one. So far, Tamashii relies on one initial starting point for performing the
optimisation task and returns the first found solution. We want to be more flexible and
do not want to give any input parameters as a specific starting point. We also want to
determine if there is a global optimum to be found, which we will accomplish by applying
different approaches in our experiment to figure out the best possible extension for the
Tamashii framework.

Global optimisation is a challenging task as it is impossible or computationally infeasible
to certify that a global optimum is found in an unknown problem. A plethora of heuristics
have been developed over time to perform the search for a global optimum. We will
first review a handful of approaches, which we will later employ in our experiments, and
give an overview of pitfalls and problems that come with them. Every optimisation task
is heavily problem-dependent, so we want to examine if we can find an algorithm that
would work particularly well in combination with Tamashii. Since Tamashii solves the
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1. Introduction

illumination requirements for several different applications, we do have to be careful not to
find a solution too closely linked to one specific problem. To get a better general picture,
we first want to examine the algorithms in an isolated environment with different test
functions, which we pick on the basis of the inherent challenges they bear for optimisation.
By doing this, we can already see if there are specific problems to focus on.

Machine learning is taking up more and more space in the world of informatics. Utilising
the power of machine learning offers a wide range of applications that can also be found
in the context of optimisation. We want to work out if machine learning provides an
applicable extension to the Tamashii framework. Performing the optimisation task in
the framework directly is a time-consuming step and limits user interaction at the time
being. By finding a solution with less computational expense, it could be possible to
allow the users to interact with the application in real-time, for instance, repeatedly
performing optimisations or changing the optimisation parameters on the go. Surrogate
models are machine learning-based applications known to be fast-running approximations
of problems that are costly to evaluate. We want to build surrogate models to test if
these could be the extensions we seek. As one of Tamashii’s main accomplishments is
the efficient computation of gradients by implementing an adjoint method, we want to
utilise this given information as well. Hence, we are selecting two gradient-enhanced
implementations for surrogate modelling on which to run our experiments.

We will now first go into details of the global optimisation background in chapter 2.1,
containing different optimisation algorithms as well as an overview of surrogate models,
followed by more information about Tamashii in chapter 2.2. In chapter 3, the problem
is defined in a formal way, and we explain how exactly the chosen algorithms are applied
in our experiments. We then describe our two experiments in chapter 4, the first being
done in a test function environment, the second one on Tamashii. In chapter Results 5,
we elaborate on our findings and the problems we encountered during the experiments
and will conclude with a summary and outlook in the end.

2



CHAPTER 2
Related Work

2.1 Local and Global Optimisation

In this chapter, we want to cover optimisation in general and related work in this
field. First, we want to start by giving a brief overview of what optimisation is, of
different approaches, and recurring problems. We then want to go into more detail
about our applied optimisation methods. Being one of the most popular methods, it
seems to be natural to start with Gradient Descent. We then continue with Adaptive
moment estimation (Adam) [KB14], another first-order optimisation algorithm. To show
a different non-gradient-based idea in optimisation, we include Simulated Annealing and
finally conclude with learning-based optimisation using surrogate models of the Surrogate
Modelling Toolbox (SMT) [SLB+24], in particular, Gradient Enhanced Neural Network
(GENN) [Ber24] and Gradient Enhanced Kriging with Partial Least Squares (GEKPLS)
[BM19].

The overall goal in optimisation is to find the best solution for a given problem, usually the
problem’s minimum or the maximum. The basis of all is optimisation in a mathematical
context, where it simply denotes finding a function’s minimum or maximum. We could
also apply optimisation in a computational context in engineering, which would mean
minimising runtime or necessary resources. Finding the optimal efficiency or quality
would be the goal in a business context. All of these requirements need to be interpreted
in a function in order to perform some way of minimising or maximising. This function,
called cost or objective function, provides a way to quantitatively measure the output.
By the nature of every problem being fundamentally different, it becomes obvious how
much the objective function and the applied methods depend on the desired outcome.

Weise et al. [WZCN09] and Weise [Wei09] give a detailed overview of common pitfalls
in optimisation and cover several well-known methods. Overall, optimisation methods
can be divided into two categories, deterministic and probabilistic algorithms [Wei09].
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2. Related Work

Deterministic algorithms efficiently explore the so-called search space to find the right
solution, while probabilistic algorithms are not that obvious, so they need heuristics in
order to find suitable candidates. Heuristics are tools to find approximate solutions for a
problem that don’t guarantee to be the best-existing one but work well enough in that
given context.

In optimisation, we also want to differentiate between local and global optimisation.
Local optimisation stops once it converges into the first possible solution that fulfils all
criteria for local extrema. This solution is accepted, although it could very well only be
a local optimum with a better solution (the global optimum) not being found or, in the
worst case, even a saddle point. Conversely, global optimisation aims to find the globally
best solution in a restricted search space. To overcome local optima, global optimisation
algorithms often incorporate the concept of iterative restarting at mostly randomly chosen
positions to eliminate the risk of converging in the wrong region. This is presumably the
biggest issue in optimisation and often happens if the problem is multimodal, meaning it
consists of several optima. Although this seems to be a recurring issue, several others
exist, as covered by Weise et al. [WZCN09] and visualised in Figure 2.1.

Premature termination can be interpreted in two different ways in terms of global
optimisation. It could mean the just-mentioned effect of an algorithm accidentally
converging towards a local optimum instead of a global one or not reaching the optimum
due to a chosen termination criterion in the algorithm configuration. Another challenge
is ruggedness or deceptiveness [WZCN09]. Ruggedness happens when a function is
multimodal and, in addition to that, has very steep ascends and descends, making it
difficult for an algorithm to overcome these bumps. Deceptiveness happens when the
function’s gradients lead away from a global optimum towards a local one. Plateaus or
so-called neutrality are especially hard to overcome for gradient-based optimisation as,
in this case, no helpful gradient can be found in any direction. Noise also complicates
the computation of the next direction. In machine learning-based optimisation, the
problematic part is to train the model accordingly to avoid the two extremes of an
inadequate model: overfitting and oversimplification. Overfitting results in an overly
complicated model in an attempt to be as accurate as possible. Oversimplification is
the opposite, where the training of a model terminates at a state where the built model
represents the input data but is not detailed enough to match the actual problem.

As individual as these problem-specific challenges are the eligible algorithms. Choosing
the right one heavily depends on the goal, whether efficiency, accuracy, or computational
effort are needed. The No Free Lunch Theorem [WM97] addresses exactly this problem.
Wolpert and Macready state that the sum over performances of all objective functions is
always the same over all optimisation methods. This means that for a certain problem, a
well-working, high-performative optimisation method exists, whilst the same algorithm
may eventually find a solution to another problem, but it will require much more time and
computational effort. The takeaway for us is to focus not only on one single optimisation
approach but also compare and study others in order to find the best match.
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2.1. Local and Global Optimisation

Figure 2.1: A visual representation of various optimisation problem types encountered in
machine learning and numerical optimisation [WZCN09].

5
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2.1.1 Gradient Descent

Gradient Descent (GD) is an efficient and straightforward to realise optimisation algorithm.
It is one of the most widely used methods and can be extended to Stochastic Gradient
Descent as well. Stochastic Gradient Descent (SGD) is particularly popular for optimising
deep neural networks [Lu22]. Gradient Descent’s core is finding a minimum on a
differentiable function, which can be convex and non-convex. As previously mentioned,
in the context of an optimisation task, this function is called cost or objective function. A
gradient is a vector pointing in the direction of the steepest increase, therefore following
this vector ultimately leads to a (possibly local) optimum. If the gradient is computed
using an adjoint method as in Tamashii [LHEN+24] or in backpropagation in Neural
Network training [RHW86], then the computational complexity of getting the gradient is
equivalent to the complexity of evaluating the function itself.

Gradient Descent is performed on a fixed number of iteration steps. In each iteration,
a step of a specific length is added to the current position in a certain direction, which
is determined via the direction of the gradient vector. The step size, often called the
learning rate, can either be constant or can be adapted over time. A small and constant
learning rate leads to slow progress and bears the risk of premature termination once
the number of iterations is reached. A larger but still constant learning rate can lead to
an optimum faster, but the algorithm often oscillates back and forth as the step size is
too large to reach the actual region. The solution is using an adaptive learning rate, for
which several approaches can be used. Exponential decay is the one most commonly used
as it results in relatively large learning rates in the beginning, leading to quick progress
and then quickly slowing down, therefore avoiding the risk of oscillation. Nevertheless,
Gradient Descent’s worst enemy is being trapped at a local minimum, which can only be
overcome by restarting the entire process from a new location.

Stochastic Gradient Descent follows the same structure as Gradient Descent but employs
a different computation of the gradient data. Instead of performing a function evaluation,
the gradient is replaced by a random variable that only equals the gradient in expectation
[SSBD14, Section 14.3]. By this, some random movement is introduced to avoid following
the strict path of a standard Gradient Descent and potentially escape local minima. In
machine learning, this often corresponds to mini-batch Gradient Descent [Lu22], where
instead of calculating the gradient using the full dataset, it is computed using a small
randomly selected subset or mini-batch of the data. Through this random subset, some
variability is introduced, and the calculation is sped up.

2.1.2 Adam

Adam is another optimisation method utilising gradients for optimal performance. Adam
stands for adaptive moment estimation [KB14] and is a combination of two previously
existing methods. It combines AdaGrad [DHS11], an algorithm with good performance
on sparse data, and RMSProp [TH12], efficiently working on non-stationary settings,
like adaptive learning rates or reinforcement learning. What differentiates Adam from a
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regular Gradient Descent is the adaptation of the learning rate based on estimates of the
gradients’ first and second-order moments. Moments are statistical measurements; the
first-order moment refers to the mean, the running average, of the gradients standing
for the general direction at the time. The second-order moment is the uncentered
variance representing the magnitude of the gradients. Including the first and second-
order moment makes Adam especially suitable for noisy or sparse gradients, where the
gradient value is mostly zero or close to zero except during certain steps. This algorithm
requires little memory and is very efficient for optimisation over a large dataset or high-
dimensional parameters. The speed of the learning rate adaptation can be controlled via
hyperparameters. The convergence is generally faster than that of a regular Stochastic
Gradient Descent, making Adam an efficient tool for training in machine learning. The
reliable convergence is also due to an included bias-regulation factor. When starting
the iterations, the first-and second-order moments are initialised to zero, as they are
running averages, therefore not correctly representing the exact state at the starting
position. With the help of the bias correction term, Adam ensures that the steps of the
first iterations are computed correctly as well.

2.1.3 Simulated Annealing

Heuristics are a common way to solve complex optimisation methods with smaller
computational requirements. They are problem-specific and need to be chosen according
to the desired outcome. Two main categories separate the heuristic algorithms, as stated
by Kirkpatrik et al. [KGJV83]. The first one is the idea of divide-and-conquer, in
which a problem is split into smaller subproblems, which are consecutively solved, and
the solution afterwards joined to an overall solution. Inherently, this category requires
that a problem can be treated as smaller disjoint subproblems in the first place. The
process of combining sub-solutions comes with small errors, which in total should not
outweigh the positive effect of the benefit of the computational reduction. Alternatively,
iterative approaches treat problems in their entirety. They start at a known configuration,
iteratively rearranging the parameters until no further improvement can be accomplished.
Accepting only steps towards either the descending or ascending direction, depending
on whether a minimum or a maximum is searched for, results in a fast convergence but
does not consistently deliver reliable solutions, as the found one does not have to be the
globally best one. Simulated Annealing (SA) is one of the most successful optimisation
algorithms that will also, from time to time, consider steps toward the other direction
leading away from the seemingly right path. This makes it less prone to getting stuck at
a local optimum. It does not take any gradient information into account [KGJV83], so
this follows a completely different idea than the previously discussed methods.

Annealing stems from material science and refers to the process of heating up metal
and then slowly cooling it down again with the aim of improving its properties. This
process is described in detail by Weise [Wei09]. Small defects in metal originating from
dislocated ions reduce the overall hardness of the material. By heating the metal, the
energy and, thus, movement of the ions is increased, and their dislocation can be dissolved.
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Slowly cooling the metal down allows the ions to rearrange their structure and find their
equilibrium state.

The Metropolis Algorithm [MRR+53] is a direct translation of this process. It provides
a probabilistic way to calculate whether a solution is accepted as the new state, laying
the foundation for the Simulated Annealing algorithm. Simulated Annealing extends the
Metropolis Algorithm by implementing a temperature annealing schedule controlled by
input parameters. At each iteration, the algorithm determines which direction to go next.
Even solutions with a higher energy will be accepted with a certain probability, giving
the opportunity to possibly escape local regions.

Simulated Annealing is a reasonably reliable optimisation algorithm as it combines both
categories of heuristic techniques. It performs an adaptive form of divide-and-conquer
in addition to iteratively exploring the search space. In this case, divide-and-conquer is
realised such that higher temperatures lead to a bigger probability of steps with higher
energy than the current being accepted. As the temperature cools, so does the probability
of accepting new positions with a higher temperature, slowly only leading towards lower
energy and the convergence towards the optimum.

2.1.4 Surrogate Models

Surrogate Models, sometimes called meta models or response surfaces [BM19], are
becoming increasingly interesting in the field of optimisation. They are fast-running
approximations of problems that are too costly to be evaluated several times in order to
perform an optimisation process. With the increasing complexity of many engineering
problems, a solution is needed that requires less computational effort to solve them. The
use cases for surrogate models are widespread and could be design-space exploration,
uncertainty quantification, or optimisation [SLB+24]. The basic idea behind using a
surrogate model is that it offers an increase in runtime performance and accuracy, which
is most of the time contradicting. Forrester et al. [FSK08] give a detailed overview of
what is necessary to set up a model and different ways to explore it (Figure 2.2). The
construction of the surrogate models starts after deciding on a suitable sampling plan, for
instance, picking random points, setting up a regular grid, or using Latinsquare Hypercube
Sampling (LHS). The sampled data is fed into the model, and model-specific parameters
are set to determine characteristics like the depth of the model, the number of training
epochs, etc. Finally, building the model depends on the chosen form of approximation,
which could be kriging, quadratic interpolation, or least squares regression, to name a
few options [SLB+24].

Exploring and exploiting a surrogate model yields similar problems to performing an
optimisation process on a real function. They often consist of many local optima and,
therefore, can be deceiving to the optimisation algorithms. Sampling the training data
for the models can be a quite costly step, therefore the setup often starts with as little
data as possible. To later improve the model, we have the option to add infill points.
These points are usually in areas of interest that appear during an optimisation iteration.
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2.1. Local and Global Optimisation

Figure 2.2: Illustration of the process of surrogate modelling, often employed in design
optimisation workflows. The steps show an iterative approach of creating and recreating
a model based on new designs [FSK08].

Forrester et al. [FSK08] give useful examples of where to look for further points to
add to the model data and how they could influence the model. One method they
call prediction-based exploration is where new points are added where the optimisation
algorithms converge, and an optimum on the current model is found. The found point
is evaluated in the real problem and fed back into the model. Another method could
be error-based exploration, where the area to add more points is selected where the
uncertainty of the current predictions is the highest. It is also important to determine a
termination criterion when to stop adding additional points. This could be done either if
the model is saturated, meaning no further improvement can be achieved, or by using
other validation techniques. After all, one must always weigh the pros and cons of how
many sample points are used to train a surrogate model to balance the computational
cost of setting it up with the benefit of receiving a well-functioning, quick-to-evaluate
model. This decision applies to both the initial training data as well as the later added
infill points.

9
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They also give useful advice on how a surrogate model could be visualised. When a
model’s size exceeds three dimensions, most humans struggle to imagine the model
structure. Furthermore, visualisation helps understand the problem on a deeper level by
seeing model characteristics and areas of interest. They show an example of visualisation
in the form of slices through the model in combination with contour lines so that even
the inner parts of the model are visible, a feature we want to incorporate into our
implementation as well.

Surrogate Modeling Toolbox (SMT) [SLB+24] is an open-source Python package to build
various kinds of surrogate models and is the main source for our work. Therefore, we want
to go into detail about what the background of this work is and what makes it noteworthy.
The current version of SMT is an improvement of an already existing one, implementing
significant extensions to established features complemented by new ones. The main
feature separating SMT from other machine learning tools is the support of gradients,
both for training and predictions. There are several popular machine learning packages
for different programming languages, like Python or Matlab. The most popular would be
skiKit-learn [PVG+18], PyTorch [PGM+19] and TensorFlow [AAB+16] for Python, or
SUMO [GCD+10] and GPML [RBLR04] for Matlab. What unites them is that none of
them focus on taking gradients into account. SMT, however, developed several surrogate
model methods with derivatives like GENN, short for Gradient-Enhanced Neural Network,
or GEKPLS, short for Gradient-Enhanced Kriging with Partial Least Squares, covered in
detail in the following subsections. The main benefit of extending a surrogate model with
derivatives is the significant improvement in accuracy with fewer training points. Since
retrieving training points is one of the major time-consuming parts, this is a relevant
improvement in the area of surrogate model application. Furthermore, they provide
sampling plans to import some of the previously mentioned methods as pre-implemented
libraries, test functions for the models, or ways of updating and retraining the model.

GENN

A Gradient-Enhanced Neural Network, short GENN, is a fully connected multilayer
perceptron [SMT22b]. It is a surrogate modelling technique that combines neural networks
with gradient information for improved accuracy and the ability to predict first derivatives
as well. This feature makes GENN particularly useful for optimisation algorithms utilising
gradient information for improved performance.

Its implementation is based on the Jacobian Enhanced Neural Network (JENN) library
[Ber24]. Jacobian is a similar concept as a gradient, with the difference that it accounts
for a vector-valued function with more than one output instead of a scalar-valued function,
which would be the case for GENN. Berguin developed JENN and performed interesting
test cases to show the significantly improved performance compared to regular neural
networks. JENN is a more complex version of GENN and offers more functionality to
fine-tune the model. While GENN gives the option to retrain a model with updated
training sets, JENN also makes weighing individual sample points possible in order to
focus on specific regions, called polishing. The reasoning behind that is the following:

10



2.1. Local and Global Optimisation

During training, the model’s goal is to minimise its prediction error. Regions with larger
changes inevitably result in higher penalties for wrong predictions, while flat regions like
valleys with changes close to zero only produce smaller prediction errors. Unfortunately,
these sort of flatter regions are often regions in close proximity to a local optimum, thus
of high interest for optimisation, but don’t receive much attention during the learning
process, resulting in higher inaccuracies. The concept of polishing provides the option to
pay more attention to these areas by giving them a higher weight and, thus, a higher
importance for correct predictions.

Berguin uses the Rosenbrock function [Ros60] to test his implementation in comparison
with the true response of the function, a regular neural network, and a polished version
of his model. The Rosenbrock function is a challenging test case for surrogate model
construction, as it consists of a shallow valley where the gradients are close to zero, being
the perfect fit to test the polishing method. Berguin shows that in the first iterations,
neither the neural networks nor JENN find the true minimum of the Rosenbrock function,
but after applying polishing, JENN is able to find it. Generally, JENN outperforms
regular neural networks in all of his test cases, proving that including derivatives results
in a measurable performance improvement.

GEKPLS

GEKPLS stands for Gradient Enhanced Kriging with Partial Least Squares. Kriging is
one of the most used interpolation models, also known as Gaussian Process Regression
[BM19]. It is one of the new methods featured in the updated SMT library [SMT22a].

The original version of kriging was developed by Matheron [Mat63]. For a long time,
kriging was not overly useful for machine learning, as a high number of function evaluations
was necessary to build an accurate model. As for other surrogate models, using gradient
information holds the opportunity to improve the model’s accuracy. However, with
Kriging, gradients are not easily included since adding more data immensely affects the
size of the correlation matrix used for the prediction process. For each sample point, the
corresponding information must be added to the correlation matrix in every direction of
the design space. The matrix thereby increases proportionally to the number of input
data and samples [BM19]. Many close sampling points produce a different issue and lead
to a quasi-linearly-dependent matrix, hindering solving the problem. Many independent
variables also used to be a performance problem due to the number of hyperparameters
that must be estimated in the training process.

Following this work, Bouhlel et al. [BBOM16] developed Kriging with Partial Least
Squares (KPLS), which results in a quicker construction process of the kriging model.
Partial Least Squares is a statistical method used to find the relation between two
matrices. Reducing the dimension of the data and using only the relevant information
is the key factor helping to improve the size of the correlation matrix. Sample points
in close proximity are checked for their relevance, and only the points with the highest
influence will be added. Due to this selection, producing an ill-conditioned, quasi-linearly-
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dependent matrix can be avoided, and the memory requirement can be kept down as
well. Bouhlel et al. show in their work that including Partial Least Squares improves the
model’s accuracy and runtime performance up to 450 times.

Finally, by combining GEK (Gradient-Enhanced Kriging) and KPLS (Kriging with Partial
Least Squares), Bouhlel and Martins develop GEKPLS. This new method utilises the
improvement in model accuracy by including gradient information while still benefiting
from the performance improvement and controlling the size of the correlation matrix and
number of hyperparameters by using Partial Least Squares.

2.2 Tamashii

2.2.1 What is Tamashii

Tamashii is a rendering framework developed by the Rendering and Modeling Group
at TU Wien. Its purpose is to realise automated lighting design across various fields
of application. In their work, Lipp et al. [LHEN+24] implemented a novel method for
global illumination in an interactive and view-independent format. This method’s goal
is to perform optimisation algorithms on light parameters to match a lighting target
represented in different forms, for example, as a pre-computed, baked illumination map,
lighting requirements in interior designs, or artistic sketches. They provide an interactive
user interface where the user is not only able to preselect the desired lighting parameters
to be optimised or draw the target directly into the scene but also to follow and adapt the
optimisation process. The optimisation is supported by an innovative way to compute
the global radiance data, the according objective function between the current state and
the target state, as well as the corresponding gradients. These gradients are computed
using an adjoint method in a backward pass, where rays are traced from the image
back into the scene to determine how changes in scene parameters affect the rendered
result. Leveraging GPU-based raytracing makes efficient interaction in the user interface
possible. Although there are existing lighting design tools [DIA22, Rel22], they don’t
offer the same range of automatisation and user interaction as Tamashii.

There is other relevant research in this area that intersects with the goals of Tamashii.
Radiative backpropagation [NDSRJ20], for instance, is a method by Nimier-David et
al. exploring a similar direction by investigating differentiable simulation of light but in
view-dependent path tracing. Additionally, other work on differential rendering [LHJ19]
and differentiable path tracing, such as Mitsuba2 [NDVZJ19], contribute to this field.
Still, none address the challenge of view-independent differentiable global illumination,
making Tamashii a standalone application at the time.

Differentiable rendering is one of the key concepts in the work of Lipp et al. The term
refers to the process of computing derivatives of the rendered image or an objective
function that evaluates the image with respect to scene parameters. Most of the time,
it is used to optimise physical properties like materials or geometry to match a target
output. In contrast to inverse rendering, which aims to find parameters that reproduce a
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given target, differential rendering includes a more efficient gradient-based optimisation
utilising the computed derivatives of the rendered image or objective function. In
Tamashii, however, the focus is not on optimising physical properties but on matching
the scene illumination to the desired target illumination. The user can select which
lighting parameters in particular they want to optimise, for instance, the light’s position,
the colour, or the intensity. All of these parameters or just a subset can be selected in
the graphical user interface and then exported into the code.

Traditional rendering methods in computer graphics can be classified into forward and
backward rendering approaches. Path tracing [Kaj86] and ray tracing [Whi80] are
examples of backward rendering methods and are view-dependent, which means they
trace rays starting from the camera to determine the visibility of the scene’s objects
or lighting. Therefore, they rely on the camera position to calculate the rendered
scene. However, these view-dependent rendering techniques are inefficient for differential
rendering of complex scenes as the objective function would need to be calculated from
many different camera angles, making the process very time-consuming.

Forward rendering methods, on the contrary, typically trace rays starting from the light
sources to simulate how the light interacts with the scene and are view-independent.
Being view-independent allows for the calculation of the global illumination of more
complex scenarios independently from the current camera position by following the rays
leaving the scene’s lighting objects in a forward approach. Each ray is traced up to a
predetermined number of ray-surface-intersections, where the contribution to the global
radiance data is updated. The gradients are computed in a backward pass employing
an adjoint method during this process. A backward pass in the context of rendering
means tracing the ray backwards into the scene to determine how changes in settings,
like the light position, affect the overall scene. It is often used in combination with an
adjoint method, as also done in Tamashii and is responsible for significant performance
acceleration. In a traditional forward gradient computation, the gradient is calculated
separately for each optimisation parameter, which can be quite time-consuming for several
parameters. In contrast to that, an adjoint gradient computation is able to compute
the gradient for all parameters in a single reverse mode, resulting in a much better
performance.

The provided gradient data can then be visualised via the Tamashii user interface as
well to help the user gain deeper insight into the problem. The objective function or
so-called cost function of the calculated radiance data and corresponding gradients can
be used for an optimisation task, which is a crucial step that enables the use of first-order
optimisation algorithms and is the key feature that our work is based on.

2.2.2 Python Extension

Tamashii’s source code is written in C++, an object-oriented programming language often
used in computer graphics. One of the main advantages of C++ is that programmers
have direct access to resources and can freely allocate and deallocate needed memory.
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While this can be very beneficial, it makes the code quite complicated and lengthy at
the same time. On the other hand, higher-level scripting languages like Python provide
other options. Their higher abstraction level makes the code more intuitive and easier
to use but comes at the cost of performance, mainly due to the interpreter overhead.
Nevertheless, a vast amount of applications are implemented using Python, especially in
the field of machine learning. As machine learning and optimisation go hand in hand, it
is highly relevant to bridge the gap between these two programming languages and make
Tamashii extendable with machine learning libraries. Preymann [Pre23] solved this by
adding a scripting automation layer for Tamashii. He implemented the interface to access
and manipulate relevant data from the C++ code and incorporate it into the new Python
functionality. Being able to access the light objects in a scene directly and retrieving the
calculated gradients and cost function opens the door to performing optimisation outside
of the Tamashii framework and in a Python environment. Using Nanobind, he created
custom bindings for the Interactive Adjoint Light Tracer (IALT), the core module needed
for our work. The integration process and generation of build files involves the build
system CMake. Following that, building the project and creating all necessary Python
files can be done via Visual Studio.

We have now given an overview of global optimisation in general as well as some selected
optimisation algorithms, which we identified as useful to apply in our context. We also
gave some insight into surrogate modelling and presented the two models in detail that
we will employ ourselves. We will now continue with a formal problem definition and
how exactly these algorithms and models are being used in our experiments.
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CHAPTER 3
Background

In Tamashii, the goal is to match a scene’s lighting to a design-space-dependent target
lighting (Figure 3.1). Therefore, the scene is initialised with a default position for one or
more lights, and the designated target illumination is set. The optimisation parameters,
the loss values, and gradients are provided by the Tamashii implementation and can
be accessed via the Python - C++ interface. In our case, the scene contains one light
source, so we start with an initial position for the corresponding object and a given target
position to be found by the optimisation algorithm.

Figure 3.1: Rendered rabbit scene with the initial light position (left) and the target
light position (right).

In the following, we will give a more formal overview of our optimisation problem based on
the original problem definition and adjoint gradient computation in Tamashii [LHEN+24].
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3. Background

3.1 Problem Definition
Lighting Position:

Let p = (x, y, z) ∈ Ω ⊂ R3 represent the 3D position of a light in the scene, where x, y,
and z are the coordinates of the light in the scene and the parameters to be optimised.
Here, Ω is the surface of the scene.

Lighting Function:

Let L : Ω × R3 → R, (p, ω) ↦→ L(p, ω) denote the radiance field, representing the
illumination on the scene’s surface depending on the light position p and the outwards
direction ω.

Target Illumination:

Let L∗ : Ω×R3 → R represent the target illumination, the desired illumination at various
points in the scene, with the light object located at the target position.

Loss Function:

The loss or objective function is the squared difference between the radiance field and
the target illumination across the scene, i.e.,

L(p) = 1
2

∫︂
Ω

1
2π

∫︂
H2

α(x, ω) (L(x, ω)− L∗(x, ω))2 dω dx,

where:

• L∗ represents the target illumination,

• Ω is the scene’s surface,

• H2 denotes the hemisphere of outgoing light directions,

• x represents points on the scene’s surface,

• ω is the direction of the radiance,

• α is a weighting function that can prioritise certain parts of the scene or lighting
directions.

Optimisation Problem:

The optimisation problem is to find an optimal light position p∗ that minimises the loss
function L(p):

p∗ = arg min
p
L(p)
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3.1. Problem Definition

Adjoint Method for Gradient Computation:

Tamashii employs an adjoint method to compute the gradient of the objective function
L(p) with respect to the lighting position p. The exact calculation can be found in the
work of Lipp et al. [LHEN+24]. This method is called adjoint method, as it computes
the gradient for the objective function in a single reverse pass instead of needing to
calculate the gradient for each individual parameter separately in forward mode. It takes
the overall changes of the scene illumination, which is a contribution of all optimisation
parameters simultaneously and propagates the changes backwards, starting from the
loss function following the negative direction of the light traces. The name adjoint
stems from the adjoint operators used for this computation, being the transpose of the
operators applied in the forward computation. We, therefore, only need one forward
pass to compute the overall scene illumination and one backward pass to compute the
corresponding gradients.

General Optimisation Process:

To find p∗, the light position p is updated iteratively using an update rule, which depends
on the applied optimisation algorithm. Concretely, for i ∈ N

pi+1 = U(pi,L, i)

where:

• pi is the current light position at iteration i,

• L is the loss function,

• U is the algorithm’s update function,

• i refers to the current iteration index.

As we have elaborated in the previous chapters, performing an optimisation is very
problem-dependent and does not have a one-fits-all solution. To find the most suitable
algorithm, we set up a range of experiments. These experiments aim to find out if a
certain algorithm outperforms others in our problem setting from various viewpoints,
which are classified as finding the target position, reliability in finding a good solution, or
runtime performance. We want to compare the classic Gradient Descent with a version of
a Stochastic Gradient Descent, Adam, and Simulated Annealing. As Tamashii enables the
use of gradients for optimisation, the first three are the most obvious choices. Nonetheless,
we also want to experiment with a non-gradient-based algorithm to see if the use of
gradients is really beneficial in this application. We experiment with different settings
for our algorithms, such as starting from one predetermined position or restarting from
several random starting points to circumvent the problem of premature termination in
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3. Background

a local minimum. We also experiment with different parameter settings for algorithm-
specific variables like learning rates, iterations per optimisation run, or cooling schedules
for Simulated Annealing.

Evaluating the loss value of Tamashii is quite a time-consuming step, so Tamashii would
be one of the textbook applications for the use of surrogate modelling. We want to
explore different options for surrogate modelling to find out if a beneficial application
exists for our problem. We decide to explore the already introduced GENN and GEKPLS
models since they are both gradient-enhanced surrogate models and can make use of
the provided gradient data in Tamashii. As one option in the new SMT2.0 version is to
update the original training data of the surrogate models, we test if iterative training
would improve our model accuracy. This relearning is done in several iterations, and the
outcome is compared to the initial surrogate model. Additionally, certain parameters are
to be set when initialising a surrogate model, so we are testing the impact of adjusting
these as well.

Since Tamashii offers an interface where several scenes can be uploaded and optimised on,
we do not want to find a solution too specific to one designated design space. We, therefore,
perform some basic experiments on test functions first to acquire a deeper insight into
the optimisation algorithms and surrogate models before applying the knowledge we have
gained to Tamashii. As test functions, we choose the Rosenbrock function [Ros60], a sine
function combined with a parabola to create a unique global minimum and the same sine
function with added noise.

T1 (Rosenbrock Function): The function rosenbrock(x, y, b) is defined as:

f(x, y) = b · (y − x2)2 + (x− 1)2, for x, y ∈ R

where b ∈ R is a constant with a default value of 10.

T2 (Sine Function): The function modified_sine(x, y) is defined as:

f(x, y) = sin(x) + 0.1 · y2, for x, y ∈ R

T3 (Sine with Noise Function): The function modified_sine_noise(x, y,
δ) adds noise in the form of another sine wave to the previous sine function. It is
defined as:

f(x, y, δ) = sin(x) + 0.1 · y2 + δ · sin(100 · (x + y)), for x, y ∈ R

where δ > 0 defines the amplitude of the added sine noise.
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3.2. Methods

3.2 Methods
We will now go further into detail on how we applied the algorithms to the test functions,
the surrogate models, and Tamashii and explain our implementation of restarting and
relearning.

3.2.1 Gradient Descent

The Gradient Descent Algorithm (GD) has a straightforward implementation and does
not require many parameter settings. We start from a single starting point containing
the coordinates in the room. The number of iterations determines the number of times
the algorithm will update its current position on the way towards an optimum before
terminating. The learning rate denotes the step size in the update process. We also input
the currently used test function or surrogate model as input and the scene’s bounding box.
At every iteration, the algorithm steps in the negative gradient direction from the current
position. The gradient is either computed by the given test function or predicted by the
surrogate model. It points in the direction of the greatest local increase, so consequently,
following the opposite direction means moving locally along the greatest decrease. We
test updating with different step sizes like a constant one or a step size scaled depending
on the current iteration count as mentioned by Shalev-Shwartz and Ben-David [SSBD14,
Section 14.4.2] and applied in the following update rule.

Gradient Descent Update Rule:

pi+1 = pi −
(︃

η√
i + 1

)︃
· ∇pL(pi), for i ∈ N

where:

• pi ∈ Rd is the current point at iteration i, where d = 2/3 for the test function
experiments or Tamashii respectively,

• η > 0 is the learning rate,

• ∇pL(pi) ∈ Rd is the gradient of d at pi.

We want to perform the optimisation within a given space, determined by each scene.
We define the bounding box for the respective scene at the beginning of the exper-
iments and use it to limit the movement of the algorithm. By calling the function
projectToBoundingBox with the point’s updated position pi+1, we can check if the
new position is still within our search space or else readjust it to be just at the border of
the space. Finally, after termination, the algorithm returns all traversed points with the
last point being the found solution treated as the minimum.
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3. Background

Algorithm 1 Modified Gradient Descent
Function: GradientDescent(starting_point, iterations, learning_rate, function / model,
boundingBox, noise_variance=0.01)

• Initialise x as a 2D array of size (iterations, len(starting_point))

• Set x[0, :] to the starting_point

• For i = 0 to iterations− 2:

– Initialise grad as a 1D array of size len(starting_point)
– If function is provided:

∗ Compute grad as gradients of the given function at x[i, :]
– Else if model is provided:

∗ For each j in gradient dimensions:
· Predict gradient grad_j by model.predict_derivatives
· grad[j]← grad_j

– Compute next_point← x[i, :]−
(︂

learning_rate√
i+1

)︂
· [grad]

– x[i + 1, :]← ProjectToBoundingBox(next_point, boundingBox)

• Return x

While we can compute the point’s gradients for the test functions or have them predicted
by the surrogate models, we have to follow a different approach for optimisation on a
Tamashii scene. The overall algorithmic structure stays the same, but the computation
of the gradients and the update process is slightly different, which is not covered in the
given pseudocode for the purpose of a better overview. We want to give a quick summary
here to then only refer to it briefly in the following subsections.

In Tamashii, the current position is represented by the exported optimisation parameters,
which can be accessed by the function:

parameters = scene.lightsToParameterV ector()

To receive the corresponding value, which in the case of Tamashii is the loss value and
the gradients for the current parameter settings, two function calls are necessary. We
perform a forward and a backward pass with the parameters:

ialt.forward(parameters)
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loss, gradients = ialt.backward()

IALT is the Interactive Adjoint Light Tracing module implemented in Tamashii and is
responsible for the gradient and loss calculation. Instead of updating the current point’s
position, we are updating the parameters to move along the negative gradient direction
with the same update rule as for the test functions and surrogate models.

3.2.2 Stochastic Gradient Descent

In our interpretation of a Stochastic Gradient Descent (SGD) algorithm, we extend the
classic Gradient Descent with some stochastic noise. After calculating the gradient, we
add some Gaussian noise between 0 and 1 with a standard deviation given as an input
variable called noise_variance following the classical definition of SGD as described by
Shalev-Shwartz and Ben-David [SSBD14]. By this, we avoid following the strict path
down the negative gradient at each point and include some unpredictable movement. By
doing this, we hope to escape local minima and find a more reliable result [SSBD14].

Algorithm 2 Stochastic Gradient Descent
Function: StochasticGradientDescent(starting_point, iterations, learning_rate, function
/ model, boundingBox, noise_variance=0.01)

• Initialise x as a 2D array of size (iterations, len(starting_point))

• Set x[0, :] to starting_point

• For i = 0 to iterations− 2:

– If function is provided:
∗ Compute grad as gradients of the given function at x[i, :]

– Else if model is provided:
∗ For each j in gradient dimensions:

· Predict gradient grad_j by model.predict_derivatives
· grad[j]← grad_j

– Add stochastic noise to the gradients:
∗ grad = grad + random noise (Gaussian with standard deviation

noise_variance)

– Compute next_point← x[i, :]−
(︂

learning_rate√
i+1

)︂
· grad

– x[i + 1, :]← ProjectToBoundingBox(next_point, boundingBox)

• Return x
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3.2.3 Adam

In Adam, the update per step also includes the gradient but follows a more advanced
structure. The gradient computation is done as in Gradient Descent, which is a direct
test function evaluation in T1, T2 or T3, a prediction by the surrogate models, or a
forward-backward pass in Tamashii. To update the position, we include first and second-
moment estimates, being the running average of the gradients and the running average
of the squared gradients, respectively. The update rule also includes a bias correction
term, which aims to equalise the incorrect computation of the first and second moment
estimations in the early stages of the algorithm.

Algorithm 3 Adam
Function: Adam(starting_point, iterations, learning_rate, function / model, bounding-
Box, beta1=0.9, beta2=0.999, epsilon=1e-8, noise_variance=0.01)

• Initialise x as a 2D array of size (iterations, len(starting_point))

• Set x[0, :]← starting_point

• Initialise m as a zero array of size len(starting_point)

• Initialise v as a zero array of size len(starting_point)

• For i = 0 to iterations− 2:

– If function is provided:
∗ Compute grad as gradients of the given function at x[i, :]

– Else if model is provided:
∗ For each j in gradient dimensions:

· Predict gradient grad_j by model.predict_derivatives
· grad[j]← grad_j

– Update the biased first-moment estimate: m← β1 ·m + (1− β1) · grad

– Update the biased second raw moment estimate: v ← β2 · v + (1−β2) · (grad2)
– Compute the bias-corrected first moment estimate: m_hat← m

1−βi
1

– Compute the bias-corrected second raw moment estimate: v_hat← v
1−βi

2

– Compute next_point← x[i, :]− learning_rate·m_hat√
v_hat+ϵ

– x[i + 1, :]← ProjectToBoundingBox(next_point, boundingBox)

• Return x
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Adam Update Rule:

pi+1 ← pi −
η · m̂√
v̂ + ϵ

, for i ∈ N

where:

• η > 0 is the learning rate,

• m̂ ∈ R is the bias-corrected first-moment estimate in the i-th iteration,

• v̂ ≥ 0 is the bias-corrected second raw moment estimate in the i-th iteration,

• ϵ > 0 is a small constant added to avoid division by zero,

• pi ∈ R is the updated position at iteration i, where d = 2/3 for test functions or
Tamashii, respectively,

3.2.4 Simulated Annealing

Simulated Annealing (SA) is a type of optimisation algorithm that does not use gradients
during the computation of the next step. Instead, it finds the next point by generating
a random neighbour and accepting the new position following specific acceptance rules.
The neighbour is produced by taking the current position and adding some random
Gaussian noise. The value of the current position and the neighbour position are then
evaluated depending on the method used. The difference between the two values is
computed, which is then used for the acceptance probability together with the current
temperature of the cooling stage. The temperature is similar to our previously mentioned
learning rate, which decays over time, allowing the algorithm to take larger steps at early
stages and smaller steps at more advanced stages. The new neighbour is then accepted
probabilistically depending on the current temperature, making it possible to accept
worse solutions with a larger probability in the beginning and getting stricter the further
the algorithm progresses.

Simulated Annealing Update Rule:

For a random neighbour point pn, we set pi+1 = pn if the value at pn is smaller than the
value at pi or a random number uniformly distributed on [0, 1] is less than δ,

where:

• δ = exp
(︂

−(L(pn)−L(pi))
temp

)︂
,

• temp is the current temperature at the i-th iteration.
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Algorithm 4 Simulated Annealing Algorithm
Function: SimulatedAnnealing(starting_point, iterations, initial_temp, cooling_rate,
function / model, boundingBox, noise_variance=0.01)

• Initialise current_point to starting_point

• If function is provided:

– Compute current_value depending on given function at current_point

• Else if model is provided:

– Predict current_value by model.predict_value at current_point

• Initialise temperature, temp = initial_temp

• Initialise x as an array of size (iterations, len(starting_point))

• Set x[0, :] to starting_point

• For i = 0 to iterations− 2:

– Generate a random neighbour and project to Bounding Box:
∗ neighbour = current_point + random noise (Gaussian with standard

deviation noise_variance)
∗ neighbour = ProjectToBoundingBox(neighbour, boundingBox)

– If function is provided:
∗ Compute neighbour_value depending on given function at neighbour

– Else if model is provided:
∗ Predict neighbour_value by model.predict_value at neighbour

– Compute the difference:

∆value = neighbour_value− current_value

– Compute the acceptance probability:

acceptance_probability = exp
(︃−∆value

temp

)︃
– If ∆value < 0 or random number < acceptance_probability:

∗ Accept the neighbour: current_point = neighbour, current_value =
neighbour_value

– Decrease the temperature: temp∗ = cooling_rate

– Set x[i + 1, :] = current_point

• Return x
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3.2.5 Restart

To overcome getting stuck in local optima or saddle points and to find potentially better
solutions, we apply the restart method to our algorithms. We hand over a list of randomly
generated starting points to our function, each of which is used to start an entirely new
cycle in the optimisation routine. Each time, we get all points of the iteration returned
so we can compare the outcome with our previous results. For that, we compute the
values for traversed points, with the last one being our currently found solution in a
manner equivalent to computing the values in the algorithm, which would either be a
direct function evaluation in T1-T3, a prediction by the surrogate model, or a forward-
backward-pass in Tamashii. We compare the new result with the already saved solution
and overwrite it with the new version if it provides an improvement. Finally, we return
the overall best solution found during this procedure.
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Algorithm 5 Optimisation with Restarts
Function: Restart(restart_points, iterations, learning_rate, boundingBox, func-
tion=None, model=None)

• Initialise empty lists: best_descent, values_descent, found_minima, and set path
to None

• For each point in restart_points:

– Initialise empty list: descent
– If function is provided:

∗ Perform optimisation method and return all iterates:

descent = optimisation_method(point, ...)

∗ Compute corresponding values to iterates:

values_temp = function(descent)

– Else if model is provided:
∗ perform optimisation method on surrogate model and return all iterates:

descent = optimisation_method_on_surrogate_model(point, ...)

∗ Predict values on surrogate model:

values_temp = model.predict_values(descent)

– minimum← [last entry of descent, last entry of value_temp]
– Append minimum to found_minima
– If last entry of values_temp is less than last entry of values_descent:

∗ values_descent = values_temp

∗ path = [descent, values_temp]
∗ best_descent = descent

• Sort found_minima by the last column in descending order

• Return best_descent, values_descent, sorted_minima, path
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3.2.6 Relearning

Relearning is applied to the surrogate models to test if an iterative addition of new
points would help to increase the model’s accuracy. For that, we implement the following
approach. We pass the current sample points, the sampled loss values, and gradients for
the respective sample points to the function. Similar to setting up the initial surrogate
model, we first perform a validation-test-split. We choose to use two-thirds of our data
for training purposes and one-third for the validation of the model. We then split the
sample points, losses, and gradients accordingly. To avoid overwriting the initial model,
we create copies, one for the retraining and a temporary one for the current iteration.
The relearning counter denotes the number of iterations we add new points to our data
sets and train the model anew. We also pass the optimisation method to the function to
determine by which algorithm the new point should be searched for.

For each iteration, we set the sample points, loss values, and gradients for our models
and train them. We then perform an optimisation from a new randomly created starting
point, looking for the current model’s minimum. The found solution is the new sample
point, and the corresponding value and the gradient are computed. The new sample
point, the sample point’s value, and the gradient are then combined with the data sets
for the next iteration. By inserting the new data at the first position in the existing sets,
we ensure that the initial base data for validation stays the same and is always a subset
of the current validation split.

We calculate and save the validation error to determine whether the current model is
an improvement compared to the previous versions. If the validation error improves, we
save the model for the next iteration. Otherwise, the same model is used in the following
iteration, where the next infill point is searched for by starting another optimisation
rerun from a new randomly determined starting point. After the last iteration, we return
the current version of the retrained model for further use.
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Algorithm 6 Relearning for Surrogate Models on Tamashii
Function: Relearning(samplePoints, sampleLosses, sampleGrads, model, method, itera-
tions, learning_rate, boundingBox, relearning_counter=10)

• Initialise new training data from 2/3-split: newSamplePoints, newSampleLosses,
newSampleGrads

• Initialise empty lists: descent, values, found_minima and error_retraining

• Create a copy of the model:

model_retrained = copy.deepcopy(model)

• For i = 0 to relearning_counter − 1:

– Create a temporary copy of the retrained model:

model_temp = copy.deepcopy(model_retrained)

– Set updated values to train the model:
∗ model_temp.set_training_values(newSamplePoints, newSampleLosses)
∗ For each dimension in gradient_dimensions:

· model_temp.set_training_derivatives

– Train the model
– Generate random starting point to perform search for minimum depending on

the given method and predict values

descent = optimisation_method_on_surrogate_model(point, ...)

values_temp = model_temp.predict_values(descent)

– Compute loss value and gradients in Tamashii with forward and backward
passes:

ialt.forward(descent[−1, :])

phi, grads = ialt.backward()

– Update training data:
∗ Combine descent[−1, :] with newSamplePoints

∗ Combine phi with newSampleLosses

∗ Combine grads with newSampleGrads

– Recalculate 2/3-split from newSamplePoints size
– Calculate validation error and append to error_retraining:

valError = ∥values_temp− descent∥2

samplePoints.shape[0]− split

– Save the improved model if validation error improves:
∗ If valError ≤ min(error_retraining):

· model_retrained = model_temp

• Return model_retrained, newSamplePoints, values, error_retraining
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CHAPTER 4
Experiments

4.1 Test Function Experiments
As was already stated by Berguin [Ber24], the Rosenbrock function is a suitable test
function for both surrogate models and optimisation in general. Consequently, we choose
this function to train our surrogate models and compare the optimisation results on the
models with direct application on the real functions. Our first experiments compare the
classic Gradient Descent with Adam and Simulated Annealing. We test these algorithms
on three functions: Rosenbrock (T1), sine (T2), and sine with added noise (T3). These
test functions are also used to train a GENN and a GEKPLS model.

For each optimisation method, we perform two tests. We first start the method with a
fixed starting point and perform one iteration only. We then restart the same method
ten times, each time with a new starting point, and save the best solution. The restart
starting points are randomly generated at the beginning of the experiment, and the same
set of points is then used for all algorithms. This way, we can ensure that the conditions
are similar for all algorithms throughout the entire experiment.

For the surrogate models, we examine two different approaches. The first one is setting
up a model with sampled data once and then applying the optimisation; the second
one is stepwise retraining it to improve its accuracy. The retrained model is tested by
performing an optimisation again and comparing the output.

4.1.1 Logarithm Mapping

During the surrogate model setup, we encounter a similar problem that Berguin already
described in his work on JENN. He determines one of the main problems in setting up the
surrogate model is the internal weighing of different regions during the training process.
Regions with high changes result in a high penalty for wrong approximations, while
regions with small changes close to zero result in a low penalty for inaccuracy. Inevitably,
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areas with smaller changes suffer from underfitting, although these are often the areas of
interest in an optimisation task. Rosenbrock, for example, has quite steep descents with
extremely large function values at the sides and a stretched flat valley close to zero in
the middle as displayed in the top left image of Figure 4.1.

In our test models, we also experience this effect’s impact. The built model shows steep
slopes at the edges and a flat area in the centre. This results in premature convergence
and, thus, wrong solutions. While Berguin solves this in his work by applying polishing,
a method where specific areas are marked as more important than others, we can not
recreate this as GENN and GEKPLS do not offer this weighing. Moreover, we intend to
find a more generally applicable solution than manually flagging areas of interest for each
individual test problem. We develop an approach to alleviate the problems of very high
function values while preserving the function’s main characteristics, like differentiability
or the exact location of optima. Concretely, we propose composing the test function with
the function x ↦→ log(1− ℓ + x), where ℓ is a lower bound on the original test function.
In applications, the test function is usually a loss function and is non-negative, so ℓ = 0.

T1-L (Rosenbrock Function with Logarithm Mapping): The function
log_rosenbrock(x, y, b) is defined as:

f(x, y) = log(1 + (b · (y − x2)2 + (x− 1)2)), for x, y ∈ R

where b ∈ R is a constant with a default value of 10.

T2-L (Sine Function with Logarithm Mapping): The function log_sine(x, y)
is defined as:

f(x, y) = log(2 + (sin(x) + 0.1 · y2)), for x, y ∈ R.

T3-L (Sine with Noise Function with Logarithm Mapping): The function
log_sine_noise(x, y, δ) is defined as:

f(x, y, δ) = log(2 + sin(x) + 0.1 · y2 + δ · sin(100 · (x + y))), for x, y ∈ R

where δ > 0 defines the amplitude of the added sine noise.

We map our test functions T1-T3 by adding a constant value before taking the logarithm.
By this, we ensure that we work with positive values before computing the logarithm,
so we are not changing the function’s characteristics. The adjusted function remains
differentiable and, therefore, applicable for training our surrogate model.
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To demonstrate that our mapping is keeping the function characteristics, we examine the
general function g(x) = log(c + f(x)), where c is a constant and f(x) is a given function.
For this, we analyse the monotonicity and differentiability of g(x).

Monotonicity

Let f : Rd → R be such that f(x) + c ≥ 1 for all x ∈ Rd and a c ∈ R. Therefore, for
x, y, with f(x) < f(y) it follows by the strict monotonicitiy of log that log(c + f(x)) <
log(c + f(y)).

In particular, for a global minimum x∗ of f , x∗ is also a global minimum of log(c + f)
and vice versa.

Differentiability

If f is differentiable and c + f(x) ≥ 1 for all x, then g = log(c + f) is (everywhere)
differentiable by the chain rule.

The derivative of g at x is computed using the chain rule:

g′(x) = d

dx
log(c + f(x)) = 1

c + f(x) · f
′(x).

Conditions

In order for g(x) = log(c + f(x)) to be well-defined and differentiable, we require that:

c + f(x) ≥ 1.

After converting the test function to the logarithm of the test function, our models are
noticeably more accurate and reliable in finding the real minimum. Figure 4.1 shows the
impact of using T1 as the basis for both optimisation methods and surrogate models
compared to using the logarithm mapped function values of T1-L. The plots show that
all function characteristics are preserved, but the features are enhanced overall and
extremely large function values are toned down.
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4. Experiments

Figure 4.1: Best path finding the minimum of different algorithms on Rosenbrock (T1)
and the logarithm mapped Rosenbrock (T1-L) to compare the improved features of
applying the logarithm. Top left: Gradient Descent with Restart on T1. Top right:
Gradient Descent on GENN based on T1. Middle left: Adam on T1-L. Middle right:
Simulated Annealing on T1-L. Bottom left: Gradient Descent on GEKPLS based on
T1-L. Bottom right: Gradient Descent on GENN T1-L.
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4.2 Optimisation on Tamashii
Equivalent to the experiments on the test functions, we apply Gradient Descent, Adam,
and Simulated Annealing with GENN and GEKPLS on the Tamashii models.

We consider the following two scenes for our Tamashii experiments:

S1 Rabbit: The rendered Stanford bunny as shown in Figure 3.1.

S2 Simple Office: A rendering of an office with two tables to be illuminated as
visualised in Figure 4.2.

Figure 4.2: Rendered Simple Office scene showing a room with one light source. The
goal is to create lighting for the two desks according to a given target illumination.

For the surrogate models, we also add Stochastic Gradient Descent (SGD) to the list of
optimisation algorithms. These algorithms are applied to the real model, as well as to
the surrogate models and the retrained versions. Finding an accurate representation of
the actual model is significantly more challenging than finding a representation of the
test functions. We test various sampling methods, parameter settings for the surrogate
model initialisation, different learning rates for the algorithms, as well as improvements
for retraining the models.

4.2.1 Algorithm Parameters

As a first step, we apply Gradient Descent (GD), Adam and Simulated Annealing
(SA) directly to the Tamashii model to create a ground truth for our surrogate model
experiments. We quickly notice that performing the optimisation on the test scenes is
very time-consuming as it requires many direct model evaluations. The main parameters
to fine-tune for Gradient Descent and Adam are the learning rate and the number of steps
per optimisation run. The main difference between direct optimisation on the model and
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optimisation on the surrogate model is the difference in the step count. In Tamashii, we
opt for a step count of only 100 instead of 1000, as used for the test function experiments
and surrogate models, to keep the runtime within a reasonable timespan. For Simulated
Annealing, we had the initial temperature and the cooling rate to experiment with.
At first sight, Simulated Annealing does not appear as promising in finding the global
minimum as Adam or Gradient Descent, so we want to see whether Simulated Annealing
is just not a suitable algorithm or if we can improve the convergence by adjusting the
parameter settings. We will elaborate more on the results of the Simulated Annealing
adjustment in the chapter 5.

4.2.2 Sampling Plan

A sampling plan needs to be made for setting up a surrogate model (Figure 2.2). In order
to find the best method, we compare different numbers of sampling points. The underlying
idea is to have a model with as few sampling points as possible since calculating the loss
value and gradient is the most time-consuming step in Tamashii. Furthermore, we test
sampling with an equidistant grid, with random sampling points and with LHS. As we
previously found promising results in working with the logarithm-mapped function values
in the test function experiments, we also apply this on Tamashii. We visualise the sampled
data and the built models by slicing through the model and plotting tiles of contour
curves with colour-mapped loss values. This helps to understand the three-dimensional
room that is otherwise hard to imagine visually. It also gives a better comparison of how
accurately a model represents the actual space.

For a better understanding, we visualise the arrangement of the contour tiles in the room.
In Figure 4.3, we can see, with slightly see-through versions of the tiles, how the x, y, and
z slices are structured in the 3D space. The colourmapping displays the loss values, with
dark purple being the smallest and bright yellow the highest. This means that the bright
yellow area is where the rabbit is located in the 3D space, shown in the bottom right
image of Figure 4.3, and a light position would lead to a high loss value in the overall
scene illumination.

Figure 4.4 shows contour tiles of the Rabbit (S1, 3.1), comparing logarithm-mapping and
normal sample values. For this, we used 1000 sample points, a high number which is
only used for visualisation purposes. Comparing the normal values with the logarithm
mapping, we can see that, equivalent to the Rosenbrock function, all features are preserved
but enhanced simultaneously, which we would evaluate as a positive effect for the time
being.
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4.2. Optimisation on Tamashii

Figure 4.3: Overview of how the contour tiles are arranged in the design space. Top left:
y-contour tiles with fixed y values, top right: x-contour tiles with fixed x values, bottom
left: z-contour tiles with fixed z values, bottom right: all contour tiles combined with
rabbit object.

Figure 4.5 shows a juxtaposition of the built GENN and GEKPLS models based on
100 sampling points in the Rabbit space. Overall, both models show very similar
representations of the real space, with GEKPLS having slightly more extreme features
than GENN.

With this gained knowledge, we want to continue our experiments and find out if the
enhanced features of logarithm mapping or the GEKPLS model yield an advantage in
the overall optimisation process.
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4. Experiments

Figure 4.4: Contour tiles of the real model of the Rabbit (S1) in X, Y, and Z directions
comparing real model values with logarithm mapping. Left: 1000 points sampled in
a regular grid without logarithm. Right: 1000 points sampled in a regular grid with
logarithm mapping.
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Figure 4.5: Contour tiles of the surrogate models of the Rabbit (S1) in X, Y, and Z
directions. Sampling method: 100 sample points in a regular grid without logarithm.
Left: Contour tiles of GENN, right: Contour tiles of GEKPLS.
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4.2.3 Surrogate Model Parameters

We also want to find the best possible initialisation parameters for the surrogate models.
Our initial setup is based on the SMT implementations ([SMT22b, SMT22a]). We
perform tests for the surrogate model parameters using the same sampling method for all
parameter settings. As the surrogate models differ every time they are set up, we choose
to work with grid sampling since this method would always return the same sampling
points for our training data, thus creating an environment as coherent as possible.

The GENN implementation provides several parameters to adjust. First, we test different
settings for lambda, the regularisation coefficient. The regularisation coefficient is
responsible for the overall smoothness of the built model. Having a small regularisation
coefficient leads to a model representing the data very closely but comes with potential
overfitting. On the other hand, a large regularisation coefficient might result in a model
that is too simple for the training data used. We try a variety from very small to very
large values for the regularisation coefficient, ranging from 0.001, 0.01, 0.1, 1 to 10.
We continue testing the learning rate alpha for the values 0.1 and 0.05. Continuing,
we test hidden_layer_sizes for [6, 6], [12, 12], [20, 6], [100] and [1000], defining the
number of neurons per layer of the neural network. Typically, in machine learning, this
setup is found via experimenting with different sizes to figure out a problem-dependent
solution. For the two-layer setting, we keep the number of neurons reasonably low, as a
bigger network would require a larger amount of training data to find a good general
representation without overfitting. However, our general approach is to find a solution to
work with as little data as possible, so we focus on smaller networks instead.

The GEKPLS model does not have as many parameters to fine-tune as GENN. We test
the parameter extra_points, which is the number of extra points per training point.
This parameter is used to modulate the model’s accuracy. The higher the number of
extra points per training point, the higher the chance for better accuracy but also higher
computational cost. A lower input for this parameter would come at the cost of accuracy
but could improve the speed during the training process. The SMT default is 0, but
the example implementation is set to 1, therefore we test both versions. We also try
different values for the nugget parameter, which is jitter for numerical stability. This
stability is achieved by adding this nugget-input value to the diagonal of the covariance
matrix used for Kriging. Especially when gradients are included in the computation, the
covariance matrix contains both the function values and the gradient information. When
function values or gradient information are close to each other, this matrix can easily
become ill-conditioned, leading to errors during the computation in the experiment. By
adding a small nugget, we can reduce the risk of these errors. The nugget also works as
a regularisation parameter, making the overall model a bit more robust. Here, we have
the same constraints to consider as for the lambda parameter in GENN. A small nugget
might not regularise the data enough, leading to potential underfitting while at the same
time not providing the needed numerical stability. A larger nugget, on the other hand,
might provide reliable numerical stability but could result in overfitting. We experiment
with the values 1e-10, 1e-8, and the SMT default of 2.220446049250313e-14.
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4.2.4 Algorithm Reliability

For each algorithm run, we return the best path towards the found minimum in the
search space. We plot the target marked as a red cross and the individual paths in the
3D space to visualise the algorithm’s behaviour and convergence (Figure 4.6, 4.7, 4.8).
The individual algorithm paths show a colour gradient from yellow (high loss value) to
the assigned colour in the legend (low loss value). The starting points are also marked as
crosses corresponding to the algorithm’s colour. Ideally, we want to see a path starting
somewhere in the room, making its way towards the red cross and converging close to it.
Nevertheless, we can see that the algorithms, most of the time, terminate somewhere else
in the room and don’t find the target. This leads us to test the reliability of the individual
algorithms on the surrogate models in isolation. In order to find out if the termination in
the wrong area is due to an unreliable algorithm or an inaccurate model, we compare the
approximated minimum of the surrogate model to the location of termination of each
individual algorithm.

Figure 4.6: Found minimum per algorithm with corresponding path on the Tamashii
model for two different experiment runs. The red cross marks the target, the differently
coloured crosses mark the starting point for the corresponding algorithms.
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Figure 4.7: Found minimum per algorithm with corresponding path on GENN model
and GENN model after relearning. Sampling method: 50 sample points in a grid with
logarithm mapping.

Figure 4.8: Found minimum per algorithm with corresponding path on GEKPLS model
and GEKPLS model after relearning. Sampling method: 50 sample points in a grid with
logarithm mapping.
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CHAPTER 5
Results

Having described our experiment setup, we now want to go into detail about our results.
We will first go over our test function experiments and then continue with the insight
we gained during the Tamashii optimisation. An overall realisation is that it appears
to be challenging to find an appropriate approximation of the individual problems for
our surrogate models. Although we figured out improvements in both the algorithm
parameter settings and the surrogate model initialisation parameters, we experience
performing the optimisation directly on the Tamashii model to be the most reliable
approach compared to optimising on the surrogate models.

5.1 Test Function Experiments

In our experiments on the test functions Rosenbrock, sine, and sine with noise (T1-L-
T3-L), we compare the impact of performing one optimisation with several restarts per
optimisation. For one iteration, we predefine fixed starting points separately for the
individual functions. This is because we already know the global minimum and want
to avoid starting our optimisation too close to that point. Certainly, in an unknown
environment, this could very well be the case, but for now, we want to prioritise testing
the functionality of our algorithms, so we seek to avoid this scenario. In Figure 5.1, 5.2,
and 5.3, we plot the convergence of each algorithm with one iteration versus the best
restart iteration from 10 random starting points towards the real function’s minimum.
Especially in the plot for the Rosenbrock convergence (Figure 5.1), we can see that
performing restarts outperforms a single algorithm iteration. We can also see that
Gradient Descent, in particular, suffers from premature termination. Working with
different learning rates and step counts per optimisation cycle shows that we can not
completely solve that problem by simply adjusting these parameters. We test constant
learning rates as well as decaying learning rates, but as a constant learning rate often
comes with the risk of oscillation once an optimum is about to be reached, we opt for the
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second approach. Similarly, for the step count, we experience that changing it results in
improved termination in some functions while worsening it for others. This effect is very
obvious comparing Figure 5.1 to 5.2 and 5.3. With our parameter setting, we achieve
overall good convergence on T1-L, while several algorithms find a close approximation of
the minimum in T2-L and T3-L but bounce out of this region and terminate somewhere
else. We find a count of 1000 steps to be a good middle ground for our test functions
and the surrogate models.

In all three plots, we find Gradient Descent without restart to be the worst-performing
algorithm. Another noticeable effect is the convergence curve of Simulated Annealing
compared to the gradient-based algorithms Gradient Descent and Adam. While they
show smooth lines, Simulated Annealing fluctuates a lot. This is due to the randomness
in creating the next position during the algorithm execution and is especially prominent
in Figure 5.2.

Overall, we can observe that the optimisations performed on the surrogate models find
similar minima as optimising on the test functions itself, leading us to conclude that
our model setup and the logarithm mapping have the desired effect of creating reliable
approximations. Furthermore, restarting seems essential to improve the algorithms
concerning premature termination, which counts particularly for Gradient Descent.
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Figure 5.1: Convergence of the different algorithms towards the logarithm mapped
Rosenbrock (T1-L) minimum with one optimisation start and the best result of 10
restarts.
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Figure 5.2: Convergence of the different algorithms towards the logarithm mapped sine
(T2-L) minimum with one optimisation start and the best result of 10 restarts.
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Figure 5.3: Convergence of the different algorithms towards the logarithm mapped sine
with noise (T3-L) minimum with one optimisation start and the best result of 10 restarts.
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5.2 Tamashii

5.2.1 Optimisation on Tamashii

The first and most obvious result we immediately notice is that applying the optimisation
algorithms directly to the real Tamashii model results in the best outcome. However, it
comes with massively increased time consumption needed to perform the task. Therefore,
we compare the algorithms by applying them once, as we did in the test function
experiments, with starting from 10 randomly chosen starting positions. We aim to create
a setup that is as versatile as possible, hence, we define a universal starting point for
performing only one algorithm iteration to be in the center of the room.

Algorithm Minima on Real Model

RABBIT, 1 Iteration, 100 steps Average
GD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Adam 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.3
SA 3.37 3.59 3.47 3.39 3.46 3.38 3.44 3.55 3.44

SIMPLE OFFICE, 1 Iteration, 100 steps Average
GD 0.0 0.0 0.0 0.0 3.91 3.91 0.0 0.0 0.98
Adam 0.0 0.0 0.0 0.0 3.91 3.91 0.0 0.0 0.98
SA 0.7 0.79 0.75 0.8 0.83 0.63 0.84 0.81 0.77

RABBIT, 10 Iterations, 100 steps Average
GD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Adam 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03
SA 2.36 2.83 2.24 0.93 1.73 0.93 4.01 1.13 2.14

SIMPLE OFFICE, 10 Iterations, 100 steps Average
GD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Adam 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SA 2.34 2.52 2.00 1.57 3.69 2.82 1.67 3.16 2.47

Table 5.1: Distances of found optimum to real optimum for different iteration counts in
independently repeated experiments for GD, Adam and SA.

We learn that both Gradient Descent and Adam reliably find the target minimum,
although there is a slight uncertainty when starting only one time from the centre. We
trace that back to the built-in noise in the Tamashii gradients, which could, at worst,
lead the algorithm away from the target minimum towards a local one. One could argue
that one single algorithm start is working well enough on Tamashii in the case of Adam
and Gradient Descent for the majority of test runs, and the lesser time consumption
outweighs the small risk of not finding the optimum. But again, we want to create a
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universally applicable solution. Seeing that in the Simple Office scene S2 (Figure 4.2), we
occasionally experience iterations finding a solution far away from the target, we want
to avoid this happening in other design scenes either, so consequently, we can not limit
our search to only one function call. Figure 4.6 shows that Gradient Descent and Adam
mostly jump straight to the desired location and find the target. Simulated Annealing, on
the other hand, turns out to be fairly unreliable, usually not finding the target minimum
(Table 5.1).

5.2.2 Timing

Measuring the times during our experiments, we receive an overview of the computational
cost of the individual approaches. As already pointed out, performing a direct evaluation
on Tamashii requires quite some time and is a factor to be considered when deciding on
the applied method. For the surrogate models, we need to sample the loss values and
gradients for a certain number of sample points instead. As we can read in Table 5.3,
sampling the loss values for 50 points just takes 9 seconds, while sampling for 100 points
takes 18 seconds already, and 500 points will take around 80 seconds. This also explains
the long duration for direct optimisation on Tamashii, as every algorithm iteration needs
to perform 100 steps. As previously tested, restarting the algorithms seems to be crucial
in order to ensure good results, so we perform ten restarts on Tamashii as well. This
eventuates in long durations, such as circa 120 seconds for Gradient Descent and Adam
or 215 seconds for Simulated Annealing on the Rabbit scene S1 (Table 5.2). The much
longer times needed for Simulated Annealing stem from the need for two calculations of
loss values per step instead of one needed in Gradient Descent and Adam. Interestingly,
the Simple Office scene does require significantly less time to calculate the loss values
and gradients.

Duration for Optimisation on Tamashii

Algorithm Rabbit Simple Office

1 Iteration 10 Iterations 1 Iteration 10 Iterations
GD 9 120 1.7 15
Adam 9 129 1.4 16
SA 23 215 3.2 90

Table 5.2: Overview of spent time in seconds to perform the different optimisation
methods on the Tamashii models S1 and S2.

Although optimising on the test scenes seems to be fairly time-consuming, one has to bear
in mind that creating a surrogate model also comes with a lot of computational costs.
Depending on the sampling plan, one has to first sample the loss values and gradients
for the defined sampling points, then train the model, potentially retrain it and finally
perform the optimisation itself. Since we plan to use as few sampling points as possible,
we want to review the computational expense for only 50 sampling points to understand
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Duration for Surrogate Models
50 points 100 points 500 points

Sampling 9 18 80

Training GENN 2.5 2.7 4.2
GEKPLS 0.3 0.8 5.4

Relearning GENN 26 30 45
GEKPLS 24 37 196

Optimisation on Surrogate Models, 10 Restarts, 1000 steps

GENN, Retrained GENN GD, SGD, Adam 4.5 4.5 4.5
SA 0.9 1 0.9

GEKPLS, Retrained GEKPLS GD, SGD, Adam 17 28 115
SA 5 7 21

Table 5.3: Overview of spent time in seconds for sampling, training and retraining the
surrogate models as well as performing the different optimisation methods with 10 restarts
on the surrogate models based on the Rabbit S1.

the time requirements. As stated before, sampling the loss values and gradients for 50
points in the Rabbit scene takes 9 seconds. Training a GENN model takes about 2.5
seconds, while training the GEKPLS model only requires 0.3 seconds. Retraining those
models 10 times can be done in about 25 seconds. Gradient Descent, Stochastic Gradient
Descent, and Adam usually all take the same time of 4.5 seconds on GENN and about 17
seconds on GEKPLS. So, would we decide to train a surrogate model with only 50 sample
points and perform ten optimisation restarts, it overall consumes 16 seconds on GENN,
26.3 seconds on GEKPLS or, in case we decided to include relearning, 41 seconds on
GENN versus 51.3 seconds on GEKPLS. Generally, evaluating a GENN model is quicker
than a GEKPLS model, which is even more noticeable the more sampling points are used.
While Gradient Descent, Stochastic Gradient Descent, and Adam more or less need the
same time to run on GENN or retrained GENN regardless of the used sampling count,
their time to run on GEKPLS or the retrained version increases drastically. Also, the
relearning process takes up much more time, increasing from 24 seconds for 50 sampling
points to 196 seconds for 500 sampling points. From a performance point of view, this
has to be considered when setting up the optimisation environment. The main use of
surrogate models is to benefit from faster model evaluations by creating an approximation
of the real problem. It seems wise to opt for as few sample points as possible to keep the
computation times as low as possible to be able to exploit the benefit from the surrogate
models.
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5.2.3 Algorithm Improvement

We quickly figured out that Simulated Annealing did not perform well on the real Tamashii
models nor on the surrogate models, so we decide to test different parameter settings for
the initial temperature and the cooling rate. We find improvements for a combination of
a high initial temperature with a slow cooling rate as well as for a low initial temperature
combined with a faster cooling rate. We take the two best combinations and test if
a higher step count within each algorithm iteration would improve this optimisation
method (Table 5.4). Indeed, a doubled step count shows better results but comes with
the cost of a doubled runtime of circa 430 seconds compared to the previous 215 seconds.
Balancing accuracy against consumed time, we conclude that the gained accuracy is out
of proportion in comparison to the amount of time needed to perform double the steps.
As Simulated Annealing is already the slowest algorithm regarding runtime, we decide to
opt for the slightly worse setting with fewer steps to find a balance between efficiency
and accuracy.

Simulated Annealing Parameters
10 Iterations, 100 steps

Initial Temperature Cooling Rate
0.8 0.9 0.99

1 1.66 1.9 3.46
10 3.27 2.55 2.73
100 1.7 2.86 1.67
1000 2.59 2.18 2.76

10 Iterations, 200 steps
1 1.03
100 2.25

Table 5.4: Overview of the influence of different parameter settings for Simulated
Annealing on Tamashii (S1) with an average distance to the target optimum over several
experiment repetitions.

5.2.4 Surrogate Model Improvement

The surrogate model generally results in a quite inaccurate representation of the search
space, leading to wrong minima. As described in the previous chapter, our first approach
is to test if we can improve the model accuracy by adjusting the hyperparameters in the
initialisation process. We, therefore, fix all necessary parameters and just change one at
a time within a certain range.
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GENN Parameters
RABBIT, 50 Samples, Grid, Log

lambda
0.001 0.01 0.1 1 10

GENN

GD 6.68 5.39 4.49 3.66 3.85
SGD 6.64 5.77 4.53 3.63 3.84
Adam 4.81 6.08 4.72 3.66 3.85
SA 4.87 5.21 4.41 3.66 3.82

Retrained GENN

GD 5.84 6.08 3.21 3.66 3.85
SGD 5.84 5.91 3.22 3.7 3.87
Adam 6.33 6.35 4.44 3.66 3.85
SA 6.08 5.94 3.43 3.9 3.9

alpha
0.1 0.05

GENN

GD 4 4.77
SGD 3.97 4.81
Adam 4 4.77
SA 3.77 5.08

Retrained GENN

GD 3.81 4.77
SGD 3.72 4.76
Adam 2.41 3.47
SA 2.26 3.81

hidden layer sizes
[6, 6] [12, 12] [20, 6] [100] [1000]

GENN

GD 4.77 2.9 3.07 2.83 2.85
SGD 4.69 2.95 3.1 2.76 2.87
Adam 4.77 2.9 3.07 1.73 1.73
SA 4.87 3.02 2.87 3.16 3.76

Retrained GENN

GD 4.77 2.9 3.07 2.82 3.46
SGD 4.73 2.9 3.07 2.91 3.46
Adam 4.77 2.9 3.07 1.73 5.2
SA 4.87 3.02 2.87 3.16 3.76

RABBIT, 50 Samples, Grid, Normal
hidden layer sizes

[6, 6] [12, 12] [20, 6] [100] [1000]

GENN

GD 3.17 2.14 2.94 3.59 3.41
SGD 3.19 2.13 1.73 6.62 6.5
Adam 1.73 1.73 1.73 6.62 6.5
SA 3.13 3.13. 2.86 3.65 3.78

Retrained GENN

GD 3.17 3.17 2.95 3.71 2.31
SGD 3.17 3.17 2.96 3.73 3.68
Adam 1.73 1.73 2.98 5.96 5.27
SA 2.97 2.97 2.85 4.72 2.37

Table 5.5: Impact of different initialisation parameters for GENN, comparing the average
distance of minima found by the different algorithms to the target minimum. The
sampling method was grid sampling with 50 sample points on S1.
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GEKPLS Parameters
RABBIT, 50 Samples, Grid, Log

extra points
1 0

GEKPLS

GD 4.33 3.04
SGD 4.33 3.04
Adam 3.14 1.52
SA 3.64 2.54

Retrained GEKPLS

GD 3.59 3.53
SGD 3.56 3.44
Adam 2.6 1.85
SA 3.63 3.34

nugget
1e-10 1e-8 2.220446049250313e-14

GEKPLS

GD 3.04 3.55 1.88
SGD 3.04 4.14 1.84
Adam 1.52 1.78 1.78
SA 2.54 1.63 1.86

Retrained GEKPLS

GD 3.53 3.81 1.87
SGD 3.44 3.7 1.81
Adam 1.85 1.91 1.63
SA 3.34 1.61 1.54

Table 5.6: Impact of different initialisation parameters for GEKPLS, comparing the
average distance of minima found by the different algorithms to the target minimum.
The sampling method was grid sampling with 50 sample points on S1.

For each tested parameter, we perform individual runs of our experiments to see if
the algorithms result in better or worse minima. The quality of the found minima is
measured by the Euclidean distance to the target minimum. Since our algorithms perform
several restarts per optimisation method with randomly selected starting points, the
outcome can vary significantly. To have a more reliable result, we use the average of
three entire experiment repetitions to determine the impact of the different parameter
settings. Per parameter, the best setting is identified and fixed as the new basis for the
following parameter tests. As we can see in the tables for 5.5, some parameters seem to
impact the model accuracy more than others. The regularisation coefficient lambda, for
instance, improves the accuracy a lot, while the learning rate alpha does not influence the
outcome too much. For the last tested parameter, the hidden layer sizes, we want to see
if logarithm mapping influences the model and the choices for our parameters. We test
the different settings for both logarithm-mapped values and normal sample values and
can see that the best settings indeed seem to vary depending on the sampling method.
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We find the best result being a size of [100] in combination with logarithm mapping or
[12, 12] for normal values. We decide to work with a value of [100] as we want to continue
exploring the effect of logarithm mapping in Tamashii.

For the parameter adjustment in GEKPLS, we only have two parameters that we can test
with. We extract from table 5.6, that by changing the nugget value we can significantly
improve the model accuracy. At the same time, the extra_point parameter only has a
small influence to the positive.

5.2.5 Impact of Sampling Plan

To find out if there is a sampling plan that is more problem-independent, we test on two
different sampling spaces, one being the Rabbit S1 (Figure 3.1) and one being the Simple
Office S2 (Figure 4.2). We choose a sampling count of 50, 100 and 500 points and three
sampling methods, grid sampling, random sampling and LHS, to work on the surrogate
models with. We also apply logarithm mapping as an option, just as we did on the test
function experiments. To be able to compare the model’s accuracy, we predict 100,000
loss values per model in a regular grid to find the area with the smallest loss values. The
position of the loss minimum on the surrogate model is used to calculate the Euclidean
distance to the target minimum to create a qualitative measurement. The Rabbit scene
has a scale of [-3, 3] in every dimension, the Simple Office is only slightly smaller so we
define a threshold of 1.73 in distance to mark the better solutions in Table 5.7. For each
sampling method, we perform three reruns of our experiments to be able to compare a
broader picture as the created models tend to differ a lot.

In the Rabbit scene, we find 50 sampling points with a grid distribution and logarithm-
mapping to be a good possible sampling plan. It still results in a model that does not
quite find the target minimum but gets the closest to the target compared to the other
approaches. Unfortunately, we can not recreate this effect on the Simple Office space. We
also find that increasing the number of sampling points does not necessarily result in a
better model but instead only significantly increases the required time for both sampling
and training the models. This strengthens our tendency to use smaller sampling counts
to create the surrogate models.

Figure 5.4 and Figure 5.5 visualise the Rabbit scene with target illumination and
illumination based on the different methods. The top left image displays the Rabbit
with the light positioned at the target for this scene. We can clearly see that the light
positioned at the minimum found on GENN and GEKPLS, as well as on the retrained
models, differs noticeably from the target image, while the minimum found by applying
the optimisation directly on Tamashii yields results very close to the optimum. Figure 5.4
is the outcome of the sampling method we found to work best on the Rabbit space for
GEKPLS. Figure 5.5 is a different sampling method, clearly not producing well-working
models.
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Surrogate Model Minima

RABBIT SIMPLE OFFICE

Grid 50 Random 50 LHS 50 Grid 50 Random 50 LHS 50
normal log normal log normal log normal log normal log normal log

GENN

7.09 5.00 2.84 6.06 3.43 5.2 3.01 2.11 3.82 2.4 1.43 0.69
6.99 1.56 6.06 4.56 7.14 1.73 2.37 2.88 2.3 3.31 3.32 3.09
6.96 1.40 2.4 1.66 5.74 6.06 3.01 3.11 2.15 2.48 3.24 2.24

Retrained GENN

7.09 5.00 2.09 6.1 3.43 2.48 3.02 2.52 3.81 3.29 2.19 0.55
4.99 2.23 6.06 4.94 7.14 5.29 3.01 2.11 2.24 3.25 3.28 1.76
5.26 4.48 5.1 5.36 5.76 1.86 3.01 3.16 0.97 2.29 3.02 4.2

GEKPLS

1.92 1.66 1.42 6.66 2.37 5.57 3.0 3.0 1.83 0.12 2.51 3.26
2.03 1.81 7.21 4.9 4.54 5.46 3.0 3.07 2.6 2.0 2.88 1.82
1.99 1.76 3.94 5.29 4.46 6.25 3.0 3.0 1.57 2.28 1.4 0.21

Retrained GEKPLS

1.92 1.98 1.42 6.66 2.27 1.49 3.49 3.35 4.48 3.23 3.53 4.38
2.03 1.88 7.21 4.75 5.01 5.46 3.47 3.35 4.36 3.2 3.91 2.67
1.99 1.87 7.21 5.29 4.5 6.25 3.41 3.54 4.86 4.15 4.01 4.34

Best Method Grid 50 Log LHS 50 Log
Best Model GENN GEKPLS

RABBIT SIMPLE OFFICE

Grid 100 Random 100 LHS 100 100 Random 100 LHS 100
normal log normal log normal log normal log normal log normal log

GENN

3.66 4.09 5.58 3.48 8.03 4.45 1.42 3.66 1.57 1.78 2.44 3.31
3.68 4.16 5.97 7.07 4.28 5.36 0.61 2.07 1.51 3.42 3.91 1.46
3.64 3.96 7.05 2.5 3.99 3.48 1.41 1.41 1.78 3.09 2.15 1.4

Retrained GENN

3.66 4.21 2.57 4.21 2.19 5.15 1.53 2.77 2.3 1.78 2.38 3.49
3.89 3.34 5.97 7.08 3.5 6.06 3.1 3.19 1.54 2.79 1.41 2.67
3.63 4.25 6.28 5.79 4.16 3.48 1.89 2.52 1.78 3.28 2.12 2.53

GEKPLS

2.54 2.35 4.13 6.26 4.67 6.67 3.29 3.14 0.57 1.81 2.42 3.5
2.61 2.49 5.31 5.56 6.07 4.07 3.29 3.14 1.14 3.21 2.06 1.7
2.6 2.56 5.73 4.6 4.98 7.13 3.07 3.14 1.81 2.47 1.3 0.12

Retrained GEKPLS

3.17 4.88 4.17 6.35 4.81 6.67 3.66 4.15 3.76 3.96 4.18 3.74
4.8 2.6 5.24 2.27 1.51 4.33 4.39 2.93 4.34 4.18 3.91 3.82
2.6 2.56 3.43 4.96 6.7 7.21 4.78 4.07 3.96 2.87 4.01 4.15

Best Method LHS 100 Normal Random 100 Normal
Best Model Retrained GEKPKLS GENN

RABBIT SIMPLE OFFICE

Grid 500 Random 500 LHS 500 Grid 500 Random 500 LHS 500
normal log normal log normal log normal log normal log normal log

GENN

5.41 7.73 3.25 3.68 4.66 3.97 2.79 2.16 2.23 3.31 4.18 3.11
7.28 7.58 3.43 6.22 4.01 3.87 3.79 3.52 2.24 2.88 4.24 1.8
7.28 7.97 3.36 4.42 3.54 3.55 3.79 2.31 4.53 2.47 0.79 3.41

Retrained GENN

5.97 3.44 3.3 3.84 4.74 3.93 1.42 3.45 3.56 3.05 2.92 3.23
5.31 5.1 3.43 4.27 4.01 4.13 2.79 3.31 3.29 2.95 4.24 1.27
5.95 5.1 3.36 4.39 3.54 3.55 2.82 1.6 4.32 0.28 2.01 3.53

GEKPLS

5.57 5.34 3.03 6.11 5.13 6.17 2.17 2.22 2.46 2.64 0.89 1.14
5.57 5.34 4.25 5.11 3.78 4.87 0.71 2.22 3.88 4.63 2.78 3.85
5.57 5.34 1.34 5.86 5.2 3.7 2.2 2.22 3.61 1.02 4.51 2.77

Retrained GEKPLS

5.43 5.17 3.12 5.16 5.13 4.89 4.09 3.38 4.28 3.87 3.61 4.69
5.62 5.39 7.44 5.11 4.29 4.87 2.88 4.45 3.96 4.05 2.92 3.63
5.57 5.39 1.24 5.86 3.97 5.56 4.15 3.51 2.16 4.65 3.97 3.97

Best Method Random 500 Normal Random 500 Log
Best Model Retrained GEKPLS GEKPLS

Table 5.7: Distances of surrogate model minima based on different sampling methods to
the target minimum. The surrogate minima were evaluated by predicting 100,000 sample
points to find the smallest loss value. The bold numbers mark the best solutions found
with a threshold of a distance smaller than 1.73.
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Applying the logarithm to the training values of the models does not have such a
significantly positive effect as it had on the Rosenbrock function (T1). For each sampling
count, we determine the best sampling method to see how often we decide for normal
values or logarithm-mapping. We can see both methods equally often, so this does not
give us a definite preference. Still, in the overall picture, we find the logarithm mapping
resulting in slightly better or only minimally worse results in building the surrogate
model. Therefore, we support the theory that this can be a helpful addition to finding
a general setup. We also can not point out a sampling method that would work well
on both the Rabbit and the Simple Office space, but we can say that LHS and random
sampling seem to be a better choice than grid sampling. GEKPLS appears to produce
minimally better optima than GENN, but in general, there is no clear trend visible on
whether GENN or GEKPLS is more suitable for Tamashii(Table 5.7).

For the model accuracy, relearning does not have a noticeably positive effect. It does
sometimes improve the found minimum, while sometimes it has no effect at all or even
worsens the solution at times. To find out if we can improve the relearning process with
a higher iteration counter, we test 20 and 30 relearning iterations as well. Unfortunately,
we must realise that this, too, does not significantly help to build a more reliable
representation. We can see a minimally positive effect, but a higher relearning counter
also comes with increased computational resources. Considering the time needed to
retrain the models, one must contemplate the benefit of having only a small chance of
improvement over drastically increasing the runtime. Furthermore, we follow one more
approach to improve the retrained models. Since we discovered that Gradient Descent
is not the most reliable choice for our surrogate models to find the surrogate minima,
covered in the following subsection, we question the fundamental idea of employing
Gradient Descent in the relearning iterations. Nevertheless, in a separate test using
Adam to find the current surrogate minima, we only see a slightly better outcome than
with the initial Gradient Descent implementation 5.8. One aspect to point out, though,
is that the GENN models seem to show marginally better responses in relearning than
the GEKPLS models.
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Surrogate Model Retraining

Gradient Descent - 10 Relearning Iterations

RABBIT SIMPLE OFFICE

Grid 50 Random 50 LHS 50 Grid 50 Random 50 LHS 50
normal log normal log normal log normal log normal log normal log

GENN/
Retrained GENN

0.00 0.00 0.75 0.00 0.04 -2.72 0.01 0.41 -0.01 0.84 0.76 -0.14
-2.00 0.67 0.00 0.38 0.00 3.56 0.64 -0.77 -0.06 -0.06 -0.04 -1.33
-1.70 3.08 2.70 3.70 0.02 -4.2 0.00 0.05 -1.18 -0.24 -0.22 1.96

GEKPLS/
Retrained GEKPLS

0.00 0.32 0.00 0.00 -0.10 -4.08 0.49 0.35 2.65 3.2 1.02 1.12
0.00 0.07 0.00 -0.15 0.47 0.00 0.07 0.28 1.76 1.20 1.03 0.85
0.00 0.09 3.27 0.00 0.04 0.00 0.41 0.54 3.29 0.92 2.61 4.13

Gradient Descent - 20 Relearning Iterations

Grid 50 Random 50 LHS 50 Grid 50 Random 50 LHS 50
normal log normal log normal log normal log normal log normal log

GENN/
Retrained GENN

0.23 0.00 1.16 2.73 -3.22 -0.28 0.13 -0.87 0.00 3.58 -0.85 -0.72
-1.78 0.00 0.13 -0.03 -1.58 4.54 0.39 -0.19 0.00 -0.21 0.03 -0.74
2.37 0.00 1.88 0.07 -2.25 0.14 0.10 0.57 0.00 0.34 0.12 0.00

GEKPLS/
Retrained GEKPLS

3.31 4.38 0.11 -0.26 -0.15 -0.05 1.16 0.29 1.04 2.09 1.71 2.79
1.28 0.07 0.02 -0.04 -2.20 -0.03 1.27 0.23 2.29 1.90 3.78 0.83
4.66 0.08 2.84 1.18 0.83 0.05 3.02 0.23 0.71 2.24 1.95 3.83

Gradient Descent - 30 Relearning Iterations

Grid 50 Random 50 LHS 50 Grid 50 Random 50 LHS 50
normal log normal log normal log normal log normal log normal log

GENN/
Retrained GENN

-1.94 3.42 -0.86 0.15 0.00 2.04 0.47 0.10 2.28 0.70 -0.06 0.05
1.73 0.00 1.86 -0.44 0.55 0.44 0.33 0.37 -1.35 0.10 0.22 -0.18
0.00 3.72 0.38 0.69 -0.05 -0.80 0.02 1.07 0.18 -1.52 -0.67 -0.49

GEKPLS/
Retrained GEKPLS

0.00 3.55 0.96 0.07 2.47 -0.08 0.90 0.35 2.96 0.98 3.18 2.51
4.25 0.00 -2.02 3.11 0.01 -2.11 1.37 -1.08 3.16 1.50 0.50 2.46
3.82 -0.18 1.30 3.39 -1.87 -0.15 1.36 0.14 0.92 2.19 1.59 1.59

Adam - 10 Relearning Iterations

Grid 50 Random 50 LHS 50 Grid 50 Random 50 LHS 50
normal log normal log normal log normal log normal log normal log

GENN/
Retrained GENN

1.59 0.00 -1.62 0.00 -3.02 1.85 -0.12 0.00 -1.09 -0.53 -0.56 -0.49
0.00 3.47 -0.04 0.07 0.51 0.15 0.00 -0.57 0.91 2.24 0.00 -1.09
0.00 3.47 -2.09 -0.32 1.11 -3.96 0.40 -0.11 -0.22 0.01 0.08 0.05

GEKPLS/
Retrained GEKPLS

0.11 0.00 0.13 -0.98 0.06 0.17 0.48 0.22 1.88 0.80 1.20 3.12
0.12 0.36 1.50 0.07 1.47 1.55 0.71 0.30 1.49 0.88 2.41 2.20
0.12 0.00 -0.22 -0.01 0.11 0.01 1.10 0.28 3.76 3.88 2.34 2.46

Table 5.8: Differences in the surrogate minima between initial model and retrained model.
The surrogate minima were evaluated by predicting 100,000 sample points to find the
smallest loss value. The bold numbers mark improvements.
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Figure 5.4: Rendered Rabbit scene (S1) with target illumination (top left) as ground
truth and results of optimisation on Tamashii model (top right, second row left
and second row right) as well as the surrogate minima before and after relearning.
Sampling method: Grid, 50 sample points, logarithm-mapping
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Figure 5.5: Rendered Rabbit scene (S1) with target illumination (top left) as ground
truth and results of optimisation on Tamashii model (top right, second row left
and second row right) as well as the surrogate minima before and after relearning.
Sampling method: Grid, 100 sample points, no logarithm-mapping
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5.2.6 Algorithm Reliability

Regarding the reliability of the individual algorithms, we find Adam to be the overall
best fit for both models and retrained models in getting closest to the surrogate model’s
minimum. As done in the previous experiments, we perform three reruns of individual
experiments to receive an average result. We compare the found minimum of each
algorithm and calculate the Euclidean distance to the surrogate’s minimum. This way,
we can ensure that we examine only how well an algorithm performs in the task of finding
the optimum and take the potential surrogate model inaccuracy out of the equation.
For this experiment, we test all sampling methods (50, 100, and 500 sample points in
combination with grid sampling, random sampling, and LHS) and logarithm mapping
versus normal loss values. We can see how often an algorithm finds a good solution for the
minimum and how close the solution is to the surrogate minimum. The proximity shows
us how well an algorithm converges to the right area. At the same time, the percentage
of good results gives insight into how reliable the method is working in different settings.

Furthermore, we evaluate the outcome of performing one optimisation starting with ten
restarts and compare the Rabbit (S1, 3.1) with the Simple Office (S2, 4.2). Interestingly,
some sampling methods seem to produce models where the algorithms work better than
others. Unfortunately, although we are working with an average over three independent
experiment runs, we can not point out one overall good solution for both the Rabbit
and the Simple Office space. A particularly interesting takeaway is that a large number
of sampling points does not improve the algorithm convergence on the models, which
goes hand in hand with our previous findings. The average distance over all sampling
methods for 50, 100, and 500 sampling points, respectively, is quite similar, leading to
the conclusion that investing more time in sampling and building up a model with a
larger sampling count does not benefit the algorithms. Besides Adam, we surprisingly
see Simulated Annealing perform very well on the surrogate models after we adjusted
the parameters. Gradient Descent and Stochastic Gradient Descent both tend to find
more or less the same solution but are generally outperformed by Adam and Simulated
Annealing (Table 5.9).

One outcome of this experiment is that performing ten restarts results in higher overall
reliability, especially for Adam. Based on the averages of each algorithm per model
(GENN, Retrained GENN, GEKPLS, Retrained GEKPLS) and sampling method, we
also calculate the average of the algorithms in combination with each model over all
sampling methods per sampling count. This gives us a good insight into how well an
algorithm performs in combination with the respective model regardless of the sampling
method.

Comparing the results of the overall distances between the surrogate model and the
retrained surrogate model, it seems that retraining does not improve the surrogate model
in terms of algorithm reliability. The convergence towards the surrogate minimum is
overall slightly worse than it is on the initial model, which leads to the conclusion that
here as well, spending the additional resources in retraining the model does not help to
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have a better optimisation setup. We occasionally see good fits between the retrained
model and Adam or Simulated Annealing, but the result is only minimally better than
the original model, so it seems reasonable to relinquish this improvement in regards to
much better runtime.

We notice that there is no outstanding advantage in applying logarithm-mapping to the
Tamashii model in terms of algorithm convergence. Normal sampling seems to yield better
convergence on the Rabbit space, while logarithm-mapping has better results on the
Simple Office space. The results are quite close, so one could argue that choosing one way
over the other would give minimal advantages in one space and minimal disadvantages in
the other and vice versa. So, on average, logarithm-mapping appears irrelevant when
deciding for or against a sampling method.

There is also no trend visible on whether GENN or GEKPLS performs better in terms of
algorithm reliability. We would argue that the algorithm convergence is slightly better on
GENN in the Rabbit space and on GEKPLS in the Simple Office space. This also does
not seem to contribute to a definite decision for one model over the other. Adam works
equally well on both GENN and GEKPLS, so the final conclusion would be to always
opt for Adam as the algorithm of choice for surrogate model optimisation regardless of
the sampling plan or surrogate model.
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Algorithm Reliability

Model Algorithm Sampling Method % Algorithm
Dist < 0.5

% Algorithm
Dist < 0.5
/ Model

Average
Model Dist

Best Algorithm
/ Model

Best Match
with Dist

Best Sampling
Method

RABBIT, 10 Restarts
Grid 50 Random 50 LHS 50

normal log normal log normal log

GENN

GD 3.21 2.11 1.61 3.34 5.42 4.59 0.00%

0.39% 2.25 Adam GENN +
Adam (0.0)

Random 50
Normal

SGD 3.21 2.11 1.61 3.34 5.43 4.60 0.11%
Adam 0.00 0.00 1.25 0.05 2.34 0.00 0.89%
SA 1.65 2.00 1.45 0.05 4.69 0.00 0.56%

Retrained
GENN

GD 3.73 5.16 1.81 3.48 4.70 1.32 0.00%

0.38% 2.31 Adam Ret GENN +
Adam (0.0)

SGD 3.73 5.16 1.81 3.48 4.70 1.33 0.00%
Adam 0.03 0.00 0.05 0.03 3.91 0.02 0.89%
SA 2.61 4.81 0.05 0.06 3.33 0.02 0.61%

GEKPLS

GD 2.92 2.05 3.69 4.32 5.55 5.16 0.06%

0.36% 2.50 Adam GEKPLS +
Adam (0.05)

SGD 2.93 2.05 3.69 4.32 6.04 5.15 0.06%
Adam 0.07 0.08 0.08 0.05 1.25 3.59 0.72%
SA 0.15 0.30 0.07 1.72 1.25 3.59 0.61%

Retrained
GEKPLS

GD 2.92 3.36 3.75 1.85 2.65 5.20 0.06%

0.44% 2.00 Adam
Ret GEKPLS +

Adam / SA
(0.06)

SGD 2.93 3.35 3.75 1.85 2.66 5.20 0.06%
Adam 0.08 0.08 0.06 0.07 0.06 3.71 0.89%
SA 0.07 0.54 0.06 0.07 0.06 3.78 0.78%
Average 1.89 2.07 1.55 1.75 3.38 2.96

Grid 100 Random 100 LHS 100
normal log normal log normal log

GENN

GD 0.07 0.06 2.87 3.77 3.91 2.51 0.39%

0.56% 1.82 Adam, SA GENN +
SGD (0.05)

Grid 100
Normal

SGD 0.07 0.05 2.87 3.77 3.91 2.16 0.39%
Adam 0.07 0.07 2.51 2.39 4.23 0.06 0.72%
SA 10.07 0.07 2.51 2.40 4.23 0.18 0.72%

Retrained
GENN

GD 1.45 2.23 3.57 4.10 3.57 1.33 0.17%

0.42% 1.98 Adam Ret GENN +
Adam (0.05)

SGD 1.45 2.23 3.57 4.10 3.58 1.33 0.17%
Adam 1.45 0.06 3.35 0.05 1.87 0.06 0.72%
SA 1.45 1.14 3.34 0.23 1.87 0.06 0.61%

GEKPLS

GD 2.23 2.98 2.49 4.40 2.96 5.69 0.00%

0.31% 2.51 Adam, SA
GEKPLS +
Adam / SA

(0.05)

SGD 2.36 2.098 2.49 4.40 2.97 5.69 0.00%
Adam 0.05 0.07 0.62 1.03 1.76 5.70 0.61%
SA 0.05 0.08 0.62 1.04 1.76 5.70 0.61%

Retrained
GEKPLS

GD 2.96 3.13 3.33 4.34 2.94 5.71 0.00%

0.25% 2.91 Adam, SA
Ret GEKPLS +

Adam / SA
(0.05)

SGD 2.96 3.13 3.34 4.34 2.94 5.71 0.00%
Adam 0.05 1.14 1.17 1.74 2.37 5.87 0.50%
SA 0.05 1.48 1.17 1.78 2.35 5.87 0.50%
Average 1.06 1.31 2.59 2.74 2.95 3.33

SIMPLE OFFICE, 10 Restarts
Grid 50 Random 50 LHS 50

normal log normal log normal log

GENN

GD 2.23 4.04 3.90 1.22 4.46 0.07 0.11%

0.26% 2.11 SA GENN +
SA (0.19)

LHS 50
Log

SGD 1.97 4.03 3.85 0.67 4.48 1.34 0.22%
Adam 1.67 2.53 2.10 0.39 2.19 0.06 0.33%
SA 1.95 3.19 3.03 0.19 0.72 0.28 0.39%

Retrained
GENN

GD 3.92 2.39 2.93 2.45 4.17 0.75 0.17%

0.28% 2.23 Adam Ret GENN +
Adam (0.08)

SGD 3.91 2.39 2.92 2.45 4.16 2.79 0.11%
Adam 2.84 2.71 1.27 0.08 1.73 0.64 0.44%
SA 1.19 2.80 1.96 1.67 0.54 0.86 0.39%

GEKPLS

GD 0.93 1.73 0.06 3.54 2.19 2.59 0.50%

0.64% 1.26 Adam, SA
GEKPLS +
Adam / SA

(0.05)

SGD 0.93 1.73 0.06 3.55 2.19 2.59 0.06%
Adam 0.95 0.06 0.06 0.85 2.09 0.05 0.78%
SA 0.95 0.96 0.06 0.85 2.09 0.05 0.78%

Retrained
GEKPLS

GD 1.45 0.78 0.09 3.78 1.75 0.78 0.39%

0.50% 1.31 Adam Ret GEKPLS +
Adam (0.06)

SGD 1.78 0.78 0.09 3.86 2.00 1.16 0.39%
Adam 1.34 0.06 0.45 0.12 0.44 0.04 0.78%
SA 3.34 0.06 2.58 0.90 2.37 0.93 0.44%
Average 1.96 1.83 1.59 1.67 2.37 0.94

Grid 100 Random 100 LHS 100
normal log normal log normal log

GENN

GD 2.10 2.167 0.66 3.25 4.17 2.69 0.11%

0.18% 2.40 Adam GENN +
Adam (0.07)

Random 100
Normal

SGD 2.11 2.67 0.66 2.67 4.17 3.56 0.11%
Adam 1.95 2.39 0.07 1.35 3.91 1.89 0.28%
SA 2.93 2.53 1.84 1.37 4.20 1.89 0.22%

Retrained
GENN

GD 1.59 1.39 2.04 3.72 4.48 3.86 0.00%

0.15% 2.52 SA
Ret GENN +
Adam / SA

(0.6)

SGD 1.60 1.98 2.04 3.39 4.48 3.86 0.00%
Adam 1.96 1.66 2.41 0.60 4.47 2.66 0.89%
SA 1.90 1.12 2.41 0.60 3.72 2.65 0.61%

GEKPLS

GD 3.66 4.05 1.92 0.83 2.77 1.64 0.22%

0.36% 2.50 Adam GEKPLS +
Adam (0.05)

SGD 3.61 2.45 1.92 0.83 2.78 1.64 0.22%
Adam 3.43 1.86 2.02 0.06 2.77 0.04 0.50%
SA 3.42 2.86 1.84 0.05 2.78 0.04 0.50%

Retrained
GEKPLS

GD 3.62 2.96 1.70 4.22 2.40 4.57 0.16%

0.25% 2.71 Adam Ret GEKPLS +
Adam (0.14)

SGD 2.67 2.49 1.70 4.22 0.18 4.56 0.22%
Adam 0.58 0.28 2.10 0.11 0.14 2.09 0.61%
SA 5.95 3.00 2.10 4.18 5.18 4.50 0.00%
Average 2.67 2.21 1.71 1.96 3.29 2.64

Table 5.9: Average distances of found minima by different algorithms to the surrogate
minimum over three independent experiment repetitions based on S1 and S2.
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5.3. Problems

5.3 Problems
The most prominent problem during our experiments is the inaccuracy of the built
surrogate models. Overall, it was not possible to find a setup to create a reliable
representation to perform our optimisation task on the surrogate models with a useful
output. Although the surrogate model meets the requirements and speeds up the Tamashii
optimisation process, we pay the price of not finding the target minimum anymore. Since
we have quite varying optimisation spaces, it does not make sense to fit a model too
closely to one specific scene, as the underlying idea was to utilise a surrogate model
for many different scenes in Tamashii. We could improve our algorithms and models
significantly by adjusting the hyperparameters, however, we can not pinpoint a universal
sampling method.

To compare the efficiency of the applied methods, we track the time spent on the
individual tasks. We hereby notice the rather long time span to perform the optimisation
directly on the Tamashii model and the extensive time needed to sample a large amount
of data. Building a surrogate model on a large data set requires a lot of time, and
optimising on a GEKPLS built with such as well. One, therefore, has to weigh the pros
and cons of efficiency against accuracy, a classic contradiction in optimisation. Efficiency
can be achieved by working with a small dataset and performing the task on a surrogate
model, accuracy can be obtained by directly optimising on the Tamashii model.

59





CHAPTER 6
Conclusion

During our experiments, we examined the effectiveness and efficiency of several different
optimisation algorithms and optimisation methods. We performed experiments on the test
functions Rosenbrock, sine, and sine with noise. In the early stages of our experiments,
we tested the benefit of implementing several optimisation restarts over a single iteration
and can say that several restarts evidently result in better outcomes regardless of the
combination with a real function or surrogate model. We also implemented logarithm-
mapping to improve our surrogate model in order to find representative approximations
of the real functions. This drastically improved our surrogate model setup and the
corresponding optimisation on these models.
Following the test functions, we continued our experiments on the Tamashii model. We
quickly realised that creating a useful surrogate model was considerably more challenging
than in the test function experiments. Moreover, it was not easy to determine when a
good model approximation was found, as the visualisation of a 4-dimensional problem
was not as straightforward as a 3-dimensional problem. We picked up the introduced
visualisation idea by Forrester et al. [FSK08] and plotted the different models and scenes
with slices through the space in every dimension with colour-mapped contour curves
for the loss values. This gave us the option to gain more insight into the differences
between the GENN versus the GEKPLS model or between real model values versus the
logarithm-mapped ones. We also visualised the path of the best-found solution for each
optimisation algorithm on the corresponding model to receive valuable insight into the
behaviour of each algorithm.
Through this visualisation, we could observe that the target minimum was usually not
found unless we applied the optimisation directly on Tamashii. This led us to test two
different things. The first was the surrogate model accuracy, depending on different
sampling strategies, to see how close the surrogate model’s minimum would come to the
target minimum; the second one was the algorithm reliability to figure out how likely
an algorithm was to find the minimum altogether. As a result of these experiments, we
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6. Conclusion

found out that the surrogate minimum was, most of the time, not even close to the target
minimum. Determining whether one model or sampling strategy was superior to the
others, we, unfortunately, found pretty uniformly distributed results for both GENN
or GEKPLS models as well as for logarithm-mapping and normal sample values. In
regards to the surrogate minimum, we found GEKPLS having a marginal lead and for
random sampling to produce a few better results. As for algorithm reliability, we see
contradictory results for the different design scenes. Here, GENN seems to provide a
better ground for convergence on the Rabbit scene, GEKPLS at the same time produces
a better environment for the Simple Office space. Analogous, working with unmapped
loss values yields better convergence in the Rabbit space, while logarithm mapping
performs better in the Simple Office space. It becomes clear that none of the two models
universally provide a good solution for the Tamashii problem. One main takeaway though
is the reliable performance of Adam. Adam appears to find the target minimum on
the Tamashii model itself but also the surrogate model’s minimum. Although Gradient
Descent also works very well on the Tamashii model, we find it not being reliable on the
surrogate models and vice versa with Simulated Annealing.

Relearning did not improve our models significantly in correcting the initial inaccuracy
from the first model training. Although we tested several improvements, we could not
find a result that was good enough to vindicate the computational resources required
to perform the relearning. In our experiments, we followed the approach of iteratively
searching for the current minimum to add this found point to our training data. As
Forrester et al. [FSK08] examine, there are other methods for infill points as well that
could be tested. One example is error-based exploration, where points are added in
the areas of highest uncertainty in the current prediction. Alternatively, playing with
different termination criteria, like training the model until it is saturated or until a certain
validation error threshold is reached, could be another approach. However, in this case,
the increasing runtime for higher relearning counts has to be considered as well.

Surrogate models don’t appear to be a useful extension to the Tamashii interface.
Unfortunately, they could not match the results of direct optimisation and are, therefore,
not applicable for real-time user interactions with optimisations in the Tamashii interface.
If very short evaluation times are needed and accuracy is less important, one could
consider defining individual surrogate model setups for each individual test scene. By
this, it might be possible to determine the best sampling plan in combination with the
best model choice and optimisation algorithm for every test scene to get an improved
representation.

Alternatively, SMT provides more versions of surrogate models. Possibly, another
surrogate model implementation might exist that fits the needs of the Tamashii scenes
better than GENN and GEKPLS, although the reasoning behind using these was the
benefit of incorporating the provided gradients. It does make sense to include the given
gradient information for surrogate modeling to be able to build better overall models. If
that was the path to be followed in the future, exchanging GENN for JENN could also
be a possible solution. The polishing method provides a more delicate way to adjust a
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model closely to a specific problem.

We conclude that for now, performing the optimisation with Gradient Descent or Adam
on the real Tamashii model gives the most accurate output. By including restarts, we can
find the target minimum in a very high percentage of test cases. This justifies the longer
duration required for direct optimisation in comparison to optimising on the surrogate
model.
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Overview of Generative AI Tools
Used

Throughout this bachelor thesis, ChatGPT4o as AI tool was used to support the building
of small pieces of code, but if applied, the generation was just used as a starting ground
for further development or help to implement our own work.

ChatGPT was used to generate some plotting functions to visualise the created data.
Here, the initial functions were created mainly to access the input data in the right
form. After the initial setups, the functions were adjusted to our needs, i.e. changing the
presentation to match the desired outcome or changing the input with further developed
experiments.

ChatGPT generated a prototype for the pseudocode algorithms in this work based on
our implementation. We also adjusted the output to our needs as well, for example,
combining two algorithms into one or shortening it for a better overview.

We used ChatGPT to help write the mathematical formulas in Latex code or to fine-tune
individual text passages. If used for text, we did not incorporate entire text passages
generated by AI but instead used it to provide support for improvement and based on
that improved selected wording.
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